vẽ hình dùm mình với ạ. Mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
CH=BC-BH=6,4(cm)
1) \(A=25x^2+10x+1\)
\(A=5x^2+2.5.10x+1\)
\(A=5x^2+100x+1\)
\(A=\left(5x+1\right)^2\)
Thay \(x=\dfrac{1}{5}\) vào biểu thức \(\left(5x+1\right)^2\)
\(\left(5x+1\right)^2\)
= \(\left(5.\dfrac{1}{5}+1\right)^2\)
= \(2^2=4\)
Nếu sai thì cho mình xin lỗi nhé
2) Bài này mình không biết làm
a)
Δ\(ABD\) có \(AM\) là tia phân giác của \(\widehat{ADB}\) \(\left(M\in AB\right)\)
⇒ \(\dfrac{MA}{MB}=\dfrac{DA}{DB}\) (1)
b)
Δ\(ACD\) có \(AN\) là tia phân giác của \(\widehat{ADC}\) \(\left(N\in AC\right)\)
⇒ \(\dfrac{NA}{NC}=\dfrac{DA}{DC}\) (2)
Từ \(\left(1\right)và\left(2\right)\), mà \(BD=CD\left(gt\right)\)
⇒ \(\dfrac{MA}{MB}=\dfrac{NA}{NC}\)
⇒ \(MN\) // \(BC\) \(\left(ĐPCM\right)\)
c)
Δ\(ABC\) có \(MN\) // \(BC\) nên:
⇒ \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
⇒ \(AM.AC=AN.AB\)
Ta có: \(MN\) //\(BC\)
⇒ \(\left\{{}\begin{matrix}\widehat{M_1}=\widehat{D_1}\\\widehat{N_1}=\widehat{D_4}\end{matrix}\right.\)
\(Mà\) \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{D_2}\\\widehat{D_3}=\widehat{D_4}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\widehat{M_1}=\widehat{D_2}\\\widehat{N_1}=\widehat{D_3}\end{matrix}\right.\)
Δ\(MKD\) có \(\widehat{M_1}=\widehat{D_2}\) ⇒ \(\text{Δ}MKD\) cân tại K
⇒ \(MK=KD\) \(\left(3\right)\)
Δ\(NKD\) có \(\widehat{N_1}=\widehat{D_3}\) ⇒ \(\text{Δ }NKD\) cân tại K
⇒ \(KN=KD\) \(\left(4\right)\)
Từ (3) và (4) ⇒ \(MK=KN\)
hay K là trung điểm của MN
a: Xét ΔOAH vuông tại A và ΔOBH vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOAH=ΔOBH
Suy ra: OA=OB; AH=BH
b: Xét ΔBHE vuông tại B và ΔAHM vuông tại A có
HB=HA
\(\widehat{BHE}=\widehat{AHM}\)
Do đó: ΔBHE=ΔAHM
Suy ra: HE=HM
c: Ta có: OM=OE
nên O nằm trên đường trung trực của ME(1)
Ta có: HE=HM
nên H nằm trên đường trung trực của ME(2)
Từ (1) và (2) suy ra OH là đường trung trực của ME
Đề bài yêu cầu gì?