K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2021

1.

\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)

Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:

\(\left|-1-\left(-m+2\right)\right|>3\)

\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)

2.

\(y'=-3x^2+6x+m-1\)

\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)

Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)

Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:

\(\left|x_1-x_2\right|>1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)

\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)

\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)

Có đúng 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

3.

\(y'=x^2+6\left(m-1\right)x+9\)

\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\sqrt{3}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)

\(\Leftrightarrow36\left(m-1\right)^2-36=108\)

\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Có 1 giá trị nguyên âm của m thỏa mãn

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

18 tháng 10 2017

Gọi h1, h2, h3, h4 là khoảng cách từ M đến các mặt phẳng (ABC), (BCD), (CDA), (DAB)

Thấy điểm M chia tứ diện ABCD thành 4 tứ diện có đỉnh M.

V(MABC) + V(MBCD) + V(MCDA) + V(MDAB) = V(ABCD)

=> (1/3)S.h1 + (1/3)S.h2 + (1/3)S.h3 + (1/3)S.h4 = V(ABCD)
Với S là diện tích của tgiác ABC (các mặt đều là tgiác đều bằng nhau)

=> h1 + h2 + h3 + h4 = 3.V(ABCD) /S = const

nếu ta gọi h là đường cao của tứ diện thì từ trên ta có:

h1 + h2 + h3 + h4 = 3(1/3).h.S /S = h

Với cạnh của tứ diện là a, Gọi H là chân đường vuông góc từ D trên mp(ABC)
AH = a√3/3, AD = a
=> h = DH = √(a²-a²/3) = a√6/3

=> h1 + h2 + h3 + h4 = a√6/3

18 tháng 10 2017

sao AH lại bằng \(\dfrac{a\sqrt{3}}{3}\) hả bạn