Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
CH=BC-BH=6,4(cm)
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔHAC~ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>BC=25
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH\cdot25=15^2=225\\AH\cdot25=15\cdot20=300\end{matrix}\right.\)
=>BH=9; AH=12
Gọi a(tuổi) là số tuổi của con hiện nay(Điều kiện: \(a\in Z^+\))
Tuổi của mẹ hiện nay là:
45-a(tuổi)
Sau 5 năm nữa, tuổi của con là: a+5(tuổi)
Sau 5 năm nữa, tuổi của mẹ là: 45-a+5=-a+50(tuổi)
Vì sau năm năm nữa tuổi con bằng \(\dfrac{3}{8}\) tuổi của mẹ nên ta có phương trình:
\(a+5=\dfrac{3}{8}\left(-a+50\right)\)
\(\Leftrightarrow a+5=-\dfrac{3}{8}a+\dfrac{75}{4}\)
\(\Leftrightarrow a+\dfrac{3}{8}a=\dfrac{75}{4}-5=\dfrac{55}{4}\)
\(\Leftrightarrow\dfrac{11}{8}a=\dfrac{55}{4}\)
hay a=10(thỏa ĐK)
Tuổi của mẹ hiện nay là: 45-10=35(tuổi)
Vậy: Hiện nay con 10 tuổi, mẹ 35 tuổi
áp dụng đl ta-lét vào tam giác có:
\(\dfrac{BC}{CA}=\dfrac{DE}{EA}=\dfrac{BC}{5}=\dfrac{3}{8}=>BC=\dfrac{3}{8}.5=\dfrac{15}{8}=1,875\)
X = BC + CA = 1,875 + 5 = 6,875
a: Xét tứ giác AECF có
AE//CF(AB//CD)
AE=CF
Do đó: AECF là hình bình hành
b: AE+EB=AB
CF+FD=CD
mà AE=CF và AB=CD
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
=>DE=BF
c:
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔAIC có
D,O lần lượt là trung điểm của AI,AC
=>DO là đường trung bình
=>DO//CI
d: AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của EF
=>AC,EF,BD đồng quy(do cùng đi qua O)
a)
Δ\(ABD\) có \(AM\) là tia phân giác của \(\widehat{ADB}\) \(\left(M\in AB\right)\)
⇒ \(\dfrac{MA}{MB}=\dfrac{DA}{DB}\) (1)
b)
Δ\(ACD\) có \(AN\) là tia phân giác của \(\widehat{ADC}\) \(\left(N\in AC\right)\)
⇒ \(\dfrac{NA}{NC}=\dfrac{DA}{DC}\) (2)
Từ \(\left(1\right)và\left(2\right)\), mà \(BD=CD\left(gt\right)\)
⇒ \(\dfrac{MA}{MB}=\dfrac{NA}{NC}\)
⇒ \(MN\) // \(BC\) \(\left(ĐPCM\right)\)
c)
Δ\(ABC\) có \(MN\) // \(BC\) nên:
⇒ \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
⇒ \(AM.AC=AN.AB\)
Ta có: \(MN\) //\(BC\)
⇒ \(\left\{{}\begin{matrix}\widehat{M_1}=\widehat{D_1}\\\widehat{N_1}=\widehat{D_4}\end{matrix}\right.\)
\(Mà\) \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{D_2}\\\widehat{D_3}=\widehat{D_4}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\widehat{M_1}=\widehat{D_2}\\\widehat{N_1}=\widehat{D_3}\end{matrix}\right.\)
Δ\(MKD\) có \(\widehat{M_1}=\widehat{D_2}\) ⇒ \(\text{Δ}MKD\) cân tại K
⇒ \(MK=KD\) \(\left(3\right)\)
Δ\(NKD\) có \(\widehat{N_1}=\widehat{D_3}\) ⇒ \(\text{Δ }NKD\) cân tại K
⇒ \(KN=KD\) \(\left(4\right)\)
Từ (3) và (4) ⇒ \(MK=KN\)
hay K là trung điểm của MN