K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

cảm ơn

a: \(x=\dfrac{6^2}{3}=12\left(cm\right)\)

\(y=\sqrt{6^2+12^2}=6\sqrt{5}\)

b: \(x=\sqrt{4\cdot9}=6\)

c: \(x=5\cdot\tan40^0\simeq4,2\left(cm\right)\)

7 tháng 10 2021

ghi đầy đủ đc ko ạ

 

11 tháng 11 2021

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

31 tháng 3 2022

Xét $\Delta MNH$ và $\Delta P$ ta có:

$\large \widehat{MHN}=\widehat{MPT}=90^o$ 

$\large \widehat{MNP}=\widehat{MTP}$(Hai góc cùng chắn cung $MP$)

Do đó $\large \Delta MNH \sim \Delta MTP$ $(g-g)$

Từ đó: $\frac{MN}{MT}=\frac{MH}{MP}\Leftrightarrow MN.MP=MH.MT$

Xét tứ giác $NQKP$ ta có: 

$\large \widehat{NQP}=\widehat{PKN}=90^o$

Mà hai góc này cùng chắn cung $NP$ 

Do đó tứ giác $NQKP$ là tứ giác nội tiếp

Suy ra: $\large \widehat{PKQ}+\widehat{PNQ}=180^o$ (Hai góc nội tiếp đối nhau)

Đồng thời ta có $\large \widehat{PKQ}+\widehat{MKQ}=180^o\Rightarrow \widehat{MNP}=\widehat{MTP}=\widehat{MKQ}$

Gọi $A$ là giao điểm của $QK$ và $MT$

Xét tứ giác $TPKA$ ta có:

$\large \widehat{MTP}+\widehat{PKQ}=\widehat{PKQ}+\widehat{MKQ}=180^o$

Mà hai góc này ở vị trí đối nhau nên tứ giác $TPAK$ là tứ giác nội tiếp 

$\large \Leftrightarrow \widehat{MPT}+\widehat{TAK}=180^o\Leftrightarrow \widehat{TAK}=180^o-\widehat{MPT}=90^o$

Do đó $MT$ vuông góc với $QK$

Hình: 

            undefined

29 tháng 3 2022

Dạ bài anh có nhầm lẫn gì kh ạ chứ khúc đầu e thấy hơi sai sai 😅😅

31 tháng 5 2018

\(x^2-\sqrt{x^2-5}=7\)

\(\Leftrightarrow\sqrt{x^2-5}=x^2-7\)

\(\Leftrightarrow\left(\sqrt{x^2-5}\right)^2=\left(x^2-7\right)^2\)

\(\Leftrightarrow x^2-5=\left(x^2\right)^2-2.x^2.7+7^2\)

\(\Leftrightarrow x^2-5=x^4-14x^2+49\)

\(\Leftrightarrow-x^4+x^2+14x^2-5-49=0\)

\(\Leftrightarrow-x^4+15x^2-54=0\)

Đặt : \(t=x^2\left(t\ge0\right)\) , ta có : 

\(-t^2+15t-54=0\)

\(\left(a=-1;b=15;c=-54\right)\)

\(\Delta=b^2-4ac\)

\(=15^2-4.\left(-1\right).\left(-54\right)\)

\(=225+4.\left(-54\right)\)

\(=225-216\)

\(=9>0\)

\(\sqrt{\Delta}=\sqrt{9}=3\)

\(t_1=\frac{-15+3}{2.\left(-1\right)}=6\) ( nhận )

\(t_2=\frac{-15-3}{2.\left(-1\right)}=9\) ( nhận ) 

Vs : \(t_1=6\Rightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)

Vs : \(t_2=9\Rightarrow x^2=9\Rightarrow x=\pm3\)

Vậy phương trình có 4 nghiệm : \(x_1=3;x_2=-3;x_3=6;x_4=-6\)

Cái đề có gì đó sai sai 

\(\)

NV
7 tháng 1 2022

22.

ĐKXĐ: \(y\ne1\)

\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+\dfrac{2}{1-y}=4\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

Trừ pt dưới cho trên:

\(\Rightarrow\dfrac{1}{1-y}=-2\)

\(\Rightarrow1-y=-\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\)

Thế vào \(x^2-\dfrac{1}{y-1}=2\)

\(\Rightarrow x^2=4\Rightarrow x=\pm2\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right);\left(-2;\dfrac{3}{2}\right)\)

NV
7 tháng 1 2022

b.

ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

\(Hệ\Leftrightarrow\left\{{}\begin{matrix}2y^2-\dfrac{10}{2x+1}=8\\2y^2-\dfrac{11}{2x+1}=7\end{matrix}\right.\)

Trừ pt trên cho dưới:

\(\Rightarrow\dfrac{1}{2x+1}=1\)

\(\Rightarrow2x+1=1\)

\(\Rightarrow x=0\)

Thế vào \(y^2-\dfrac{5}{2x+1}=4\)

\(\Rightarrow y^2=9\Rightarrow y=\pm3\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(0;3\right);\left(0;-3\right)\)