Tính
(x - 3y)(x + 3y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+3y=t\) thì biểu thức được viết lại dưới dạng biến \(t\) như sau:
\(t^3-6t^2+12t=-19\)
\(\Leftrightarrow\) \(t^3-6t^2+12t+19=0\)
\(\Leftrightarrow\) \(\left(t-1\right)\left(t^2-7t+19\right)=0\) \(\left(a\right)\)
Mà \(t^2-7t+19=\left(t-\frac{7}{2}\right)^2+6\frac{3}{4}>0\) với mọi \(t\)
nên từ \(\left(a\right)\) \(\Rightarrow\) \(t=1\), tức là \(x+3y=1\)
\(\Leftrightarrow\left(x+3y\right)^3-6\left(x+3y\right)^2+12\left(x+3y\right)-8=-27\)
\(\Leftrightarrow\left(x+3y-2\right)^3=-27\)
\(\Leftrightarrow\left(x+3y-2\right)^3=\left(-3\right)^3\)
\(\Rightarrow x+3y-2=-3\)
\(\Rightarrow x+3y=-1\)
\(=\left[\dfrac{\left(3x+y\right)\left(x+3y\right)+\left(3x-y\right)\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\right].\dfrac{\left(x-3y\right)\left(x+3y\right)}{x^2+y^2}\)
\(=\dfrac{\left(3x+y\right)\left(x+3y\right)+\left(3x-y\right)\left(x-3y\right)}{x.\left(x^2+y^2\right)}\)
\(=\dfrac{3x^2+3xy+xy+3y^2+3x^2-3xy-xy+3y^2}{x\left(x^2+y^2\right)}\)
\(=\dfrac{6x^2+6y^2}{x\left(x^2+y^2\right)}=\dfrac{6\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{6}{x}\)
a. (x+2y)2)(x+2y)2) =x2+4xy+4y2=x2+4xy+4y2
b. (x−3y)(x+3y)(x−3y)(x+3y) =x2−(3y)2=x2−9y2=x2−(3y)2=x2−9y2
c. (5−x)2(5−x)2 =52−10x+x2=25−10x+x2
\(A=x\left(x-9y+1\right)+3y\left(x+3y-1\right)-2\)
\(=x^2-9xy+x-3xy+9y^2-3y-2\)
\(=x^2-6xy+x+9y^2-3y-2\)
\(=\left(x^2-6xy+9y^2\right)+\left(x-3y\right)-2\)
\(=\left(x-3y\right)^2+\left(x-3y\right)-2\left(1\right)\)
Thay \(x-3y=5\) vào \(\left(1\right)\) ta được:
\(A=5^2+5-2=25+5-2=28\)
x3+3x23y+3x3y
đéo giải nửa án lớn bỏ đi con
Đặt x + 3y = a, ta có:
a3 - 6a2 +12a = -19
=> a3 - 6a2 +12a +19 = 0
=> a3 +a2 - 7a2 - 7a +19a +19 =0
=> a2(a +1) - 7a(a +1) +19(a+1) =0
=> (a2 -7a +19)(a +1)=0
=> a + 1 = 0 ( Vì a2 -7a +19 > 0 với mọi a)
=> a = -1
=> x + 3y = -1
Vậy: x + 3y = -1
(x - 3y)(x + 3y)
= x2 + 3xy -3xy - (3y)2
= x2 - (3y)2
Từ phép tính này sẽ suy ra một hằng đẳng thức đáng nhớ:
(x - y)(x + y) = x2 - y2
Sau này gặp những phép tính mà lấy tổng 2 số nhân hiệu 2 số thì bạn cứ áp công thức này vào nhé
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Vậy (x - 3y)(x + 3y) = x2 - 9y2
=x⋅x−3yx+3yx⋅x-3yx+3y
=x2−3yx+3y
=x^2-3xy+3y
nho k de ung ho mik nhe