Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
b)\(\left(2x-3\right)^4-2\)
Đặt \(B=\left(2x-3\right)^4-2\)
Vì \(\left(2x-3\right)^4\ge0\).Nên \(\left(2x-3\right)^4-2\ge-2\)
Dấu = xảy ra khi \(2x-3=0\Rightarrow x=\frac{3}{2}\)
Vậy Min B = -2 khi x = \(\frac{3}{2}\)
a)\(\left(x-3,5\right)^2+1\)
Đặt \(A=\left(x-3,5\right)^2+1\)
Vì \(\left(x-3,5\right)^2\ge0\).Do đó \(\left(x-3,5\right)^2+1\ge1\)
Dấu = xảy ra khi \(x-3,5=0\Rightarrow x=3,5\)
Vậy Min A=1 khi x = 3,5
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
M=lx-3,5l+l2x-7l-4/9>(=)0+0-4/9=-4/9
dấu = xảy ra khi lx-3,5l=l2x-7l=0
=>x=3,5
vậy MinM=-4/9 khi x=3,5