Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{2}{3}\right|\ge0\)\(\forall\)\(x\)
nên : \(\left|x-\frac{2}{3}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
hay \(A\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu " = " xảy ra :
\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{2}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{2}{3}\)
Vậy GTNN của \(A=\frac{3}{4}\)đạt được khi \(x=\frac{2}{3}\)
(14-x)/(4-x)
TH1:14-x=0 TH2:4-x=0
x+14-0=14 x=4-0=4
vì 14>4 => x=4 là giá trị nhỏ nhất
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
Ta có |x-10| > hoặc = 0
=> |x-10|+ 2021 > hoặc = 2021
Dấu "=" xảy ra khi x-10 = 0
=> x-10 = 0
=> x=10
Giá trị nhỏ nhất của biểu thức A=|x-10|+2021 là = 2021 khi x =10
Ta có : |x-10| > 0 => |x-10| + 2021 > 0 + 2021
A > 2021
Dấu"=" xảy ra khi x - 10 = 0 => x =10
Vậy Amin=2021 khi x = 10
M=lx-3,5l+l2x-7l-4/9>(=)0+0-4/9=-4/9
dấu = xảy ra khi lx-3,5l=l2x-7l=0
=>x=3,5
vậy MinM=-4/9 khi x=3,5
1) \(A=23+\left|2x-\frac{1}{3}\right|\)
Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|2x-\frac{1}{3}\right|+23\ge23\forall x\)
\(A=23\Leftrightarrow\left|2x-\frac{1}{3}\right|=0\Leftrightarrow2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)
Vậy Amin=23 \(\Leftrightarrow x=\frac{1}{6}\)
Câu b, câu c tương tự
2) \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
Ta có: \(\orbr{\begin{cases}\left|x-3,5\right|\ge0\forall x\\\left|y-1,3\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\forall x\)
Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\y=1,3\end{cases}}}\)
Vậy x=3,5 ; y=1,3