Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí pytago vào ΔADE vuông tại A, ta được
\(ED^2=AE^2+AD^2\)
Áp dụng định lí pytago vào ΔABE vuông tại A, ta được
\(BE^2=AE^2+AB^2\)
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
\(BC^2=AB^2+AC^2\)
Áp dụng định lí pytago vào ΔACD vuông tại A, ta được
\(CD^2=AC^2+AD^2\)
Ta có: \(CD^2+EB^2=\left(AC^2+AD^2\right)+\left(AE^2+AB^2\right)=\left(AD^2+AE^2\right)+\left(AB^2+AC^2\right)=ED^2+CB^2\)
hay \(CD^2-CB^2=ED^2-EB^2\)(đpcm)
+ Xét \(\Delta ACD\) vuông tại \(A\left(gt\right)\) có:
\(CD^2=AC^2+AD^2\) (định lí Py - ta - go) (1).
+ Xét \(\Delta ADE\) vuông tại \(A\left(gt\right)\) có:
\(ED^2=AE^2+AD^2\) (định lí Py - ta - go) (2).
+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(CB^2=AC^2+AB^2\) (định lí Py - ta - go) (3).
+ Xét \(\Delta AEB\) vuông tại \(A\left(gt\right)\) có:
\(EB^2=AE^2+AB^2\) (định lí Py - ta - go) (4).
Trừ vế (1) với (3) và trừ vế (2) với (4) ta được:
\(\left\{{}\begin{matrix}CD^2-CB^2=AC^2-AC^2+AD^2-AB^2=AD^2-AB^2\\ED^2-EB^2=AE^2-AE^2+AD^2-AB^2=AD^2-AB^2\end{matrix}\right.\)
\(\Rightarrow CD^2-CB^2=ED^2-EB^2\left(đpcm\right).\)
Chúc bạn học tốt!
Xét tam giác ADE là tam giác vuông tại A => DC²= AD²+AC² (định lí Py-ta-go)
tam giác ABE là tam giác vuông tại A => BE²= AB²+AE²(định lí Py-ta-go)
tam giác ADE là tam giác vuông tại A => DE²= AD²+AE²(định lí Py-ta-go)
tam giác ABC là tam giác vuông tại A => BC²= AB²+AC²(định lí Py-ta-go)
Ta có : CD²+ EB² =(AD²+AC²)+(AB²+AE²)
=> CD²+ EB² =AD²+AC²+AB²+AE²
=> CD²+ EB² =AD²+ AE²+AC²+AB²
=> CD²+ EB²= (AD²+AE²)+(AB²+AC²)
=> CD²+ EB²= ED²+ CB²
=> CD²- CB² = ED²- EB² (dpcm
Xong r đó bạn, đúng đấy ko sai đâu, chép vào ^_^
Câu b sai đề, sửa thành: DB2 + DC2 = 2DE2 + EB2 + EC2
a, Xét △ADB vuông tại A và △EDB vuông tại E
Có: DB là cạnh chung
ABD = EBD (gt)
=> △ADB = △EDB (ch-gn)
=> AD = ED (2 cạnh tương ứng)
b, Xét △EDB vuông tại E có: BD2 = DE2 + EB2 (định lý Pytago) (1)
Xét △DEC vuông tại E có: CD2 = DE2 + EC2 (định lý Pytago) (2)
Cộng 2 vế (1) và (2) => DB2 + DC2 = DE2 + DE2 + EB2 + EC2
=> DB2 + DC2 = 2DE2 + EB2 + EC2
a.Xét hai tam giác vuông ABD và tam giác vuông EBD có
góc BAD = góc BED = 90độ
cạnh BD chung
góc ABD = góc EBD [ vì BD là phân giác góc B ]
Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)DA = DE [ cạnh tương ứng ]
b.Áp dụng định lí Py-ta-go vào tam giác vuông EBD có
\(DB^2=EB^2+DE^2\)[ 1 ]
Áp dụng định lí Py-ta-go vào tam giác vuông EDC có
\(DC^2=DE^2+EC^2\)[ 2 ]
Từ [ 1 ] và [ 2 ] suy ra
\(DB^2+DC^2=EB^2+DE^2+DE^2+EC^2\)
\(\Rightarrow DB^2+DC^2=2DE^2+EB^2+EC^2\)
Học tốt
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
Qua trung diem M doan AB vẽ đường thẳng xx'vuông góc AB . Trên Mx lấy C và D còn trên Mx' lấy E
a) CM:AC= CB
b)CM: tam giác ACD = tam giác BCD
c) CM: goc EAD = goc EBD
Áp dụng định lý Pitago cho tam giác vuông ACD:
\(CD^2=AD^2+AC^2\)
Áp dụng định lý Pitago cho tam giác vuông ABC:
\(CB^2=AB^2+AC^2\)
\(\Rightarrow CD^2-CB^2=AD^2+AC^2-AB^2-AC^2=AD^2-AB^2\) (1)
Áp dụng định lý Pitago cho tam giác vuông ADE:
\(ED^2=AD^2+AE^2\)
Áp dụng định lý Pitago cho tam giác vuông ABE:
\(EB^2=AB^2+AE^2\)
\(\Rightarrow ED^2-EB^2=AD^2+AE^2-AB^2-AE^2=AD^2-AB^2\) (2)
(1);(2) \(\Rightarrow CD^2-CB^2=ED^2-EB^2\)
Ta cần CM: \(CD^2-CB^2=ED^2-EB^2\Leftrightarrow CD^2-AB^2-AC^2=ED^2-EB^2\Leftrightarrow EB^2-AB^2=ED^2-\left(CD^2-AC^2\right)\Leftrightarrow AE^2=ED^2-AD^2\left(luônđúng\right)\) (vì các tam giác ACD, ABE,ADE đều vuông tại A) \(\Rightarrowđpcm\)