Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABD và tam giác EBD có : BD chung
góc ABD = góc EBD do BD là pg của góc ABC (Gt)
BE = BA (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
b, tam giác ABD = tam giác EBD (câu a)
=> DA = DE (đn)
và góc DAB = góc DEB (đn)
góc DAB = 90
=> góc DEB = 90
=> DE _|_ BC
=> tam giác DEC vuông tại E (đn)
=> góc CDE + góc BCA = 90 (đl)
tam giác ABC vuông tại A (gt) => góc ABC + góc BCA = 90 (Đl)
=> góc ABC = góc CDE
c, AH _|_ BC (Gt)
DE _|_ BC (câu b)
=> AH // DE (đl)
B H E A D C
Mình vẽ hơi xấu mong bạn thông cảm:)
a) \(\Delta ABD\) và \(\Delta EBD\) có :
\(BE=BA\)
\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là phân giác )
\(BC:\) cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)
b) Từ ( 1 ) => \(DA=DE\) và \(\widehat{BAD}=\widehat{BED}=90^0\)
Mặt khác , ta có : \(\widehat{ABC}=\widehat{BAC}-\widehat{C}=90^0-\widehat{C}\)
\(\widehat{EDC}=\widehat{DEC}-\widehat{C}=90^0-\widehat{C}\)
\(\Rightarrow\widehat{ABC}=\widehat{EDC}\)
c) Ta có : \(AH\perp BC\), \(DE\perp BC\) ( vì \(\widehat{DEC}=90^0\) ) nên AH//DE
Ta có : \(BE^2-EC^2=\left(BD^2-DE^2\right)-\left(DC^2-DE^2\right)\)
\(=BD^2-DC^2=BD^2-AD^2=AB^2\)
Vậy nên \(BE^2-EC^2=AB^2\)
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
a, Xét tam giác DAE và tam giác BAC có
DAE = BAC ( đối đỉnh )
AD = AB ( gt)
AE= AC ( gt)
=> tam giác DAE = tam giác BAC
=> BC= DE
b, ta có DAE = BAC = 90 độ ( 2 góc đối đỉnh )
lại có BAD = CAE đối đỉnh
=> BAD=CAE = 360 - (BaC + DAE) tất cả trên 2
<=> BAD= 360 -180 tâts cả trên 2
<=> BAD = 180 trên 2
<=> BAD = 90 độ
=> tam giác BAD vuông lại A
mà AB =AD (gt)
=> BAD vuông cân
=> DBA = BDA = 90 trên 2 = 45 độ
Chứng mình tương tự tam giác CAE vuông cân
=>AEC=ACE= 90 trên 2 = 45 độ
=> DBA=AEC=45 độ
mà chúng ở vị trí sole trong
=> BD // CE
Câu b sai đề, sửa thành: DB2 + DC2 = 2DE2 + EB2 + EC2
a, Xét △ADB vuông tại A và △EDB vuông tại E
Có: DB là cạnh chung
ABD = EBD (gt)
=> △ADB = △EDB (ch-gn)
=> AD = ED (2 cạnh tương ứng)
b, Xét △EDB vuông tại E có: BD2 = DE2 + EB2 (định lý Pytago) (1)
Xét △DEC vuông tại E có: CD2 = DE2 + EC2 (định lý Pytago) (2)
Cộng 2 vế (1) và (2) => DB2 + DC2 = DE2 + DE2 + EB2 + EC2
=> DB2 + DC2 = 2DE2 + EB2 + EC2
a.Xét hai tam giác vuông ABD và tam giác vuông EBD có
góc BAD = góc BED = 90độ
cạnh BD chung
góc ABD = góc EBD [ vì BD là phân giác góc B ]
Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)DA = DE [ cạnh tương ứng ]
b.Áp dụng định lí Py-ta-go vào tam giác vuông EBD có
\(DB^2=EB^2+DE^2\)[ 1 ]
Áp dụng định lí Py-ta-go vào tam giác vuông EDC có
\(DC^2=DE^2+EC^2\)[ 2 ]
Từ [ 1 ] và [ 2 ] suy ra
\(DB^2+DC^2=EB^2+DE^2+DE^2+EC^2\)
\(\Rightarrow DB^2+DC^2=2DE^2+EB^2+EC^2\)
Học tốt