K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí pytago vào ΔADE vuông tại A, ta được

\(ED^2=AE^2+AD^2\)

Áp dụng định lí pytago vào ΔABE vuông tại A, ta được

\(BE^2=AE^2+AB^2\)

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

Áp dụng định lí pytago vào ΔACD vuông tại A, ta được

\(CD^2=AC^2+AD^2\)

Ta có: \(CD^2+EB^2=\left(AC^2+AD^2\right)+\left(AE^2+AB^2\right)=\left(AD^2+AE^2\right)+\left(AB^2+AC^2\right)=ED^2+CB^2\)

hay \(CD^2-CB^2=ED^2-EB^2\)(đpcm)

20 tháng 2 2020

+ Xét \(\Delta ACD\) vuông tại \(A\left(gt\right)\) có:

\(CD^2=AC^2+AD^2\) (định lí Py - ta - go) (1).

+ Xét \(\Delta ADE\) vuông tại \(A\left(gt\right)\) có:

\(ED^2=AE^2+AD^2\) (định lí Py - ta - go) (2).

+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(CB^2=AC^2+AB^2\) (định lí Py - ta - go) (3).

+ Xét \(\Delta AEB\) vuông tại \(A\left(gt\right)\) có:

\(EB^2=AE^2+AB^2\) (định lí Py - ta - go) (4).

Trừ vế (1) với (3) và trừ vế (2) với (4) ta được:

\(\left\{{}\begin{matrix}CD^2-CB^2=AC^2-AC^2+AD^2-AB^2=AD^2-AB^2\\ED^2-EB^2=AE^2-AE^2+AD^2-AB^2=AD^2-AB^2\end{matrix}\right.\)

\(\Rightarrow CD^2-CB^2=ED^2-EB^2\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 1 2015

Xét tam giác ADE là tam giác vuông tại A => DC²= AD²+AC² (định lí Py-ta-go)

      tam giác ABE là tam giác vuông tại A => BE²= AB²+AE²(định lí Py-ta-go)

      tam giác ADE là tam giác vuông tại A => DE²= AD²+AE²(định lí Py-ta-go)

      tam giác ABC là tam giác vuông tại A => BC²= AB²+AC²(định lí Py-ta-go)

Ta có : CD²+ EB² =(AD²+AC²)+(AB²+AE²)

        =>  CD²+ EB² =AD²+AC²+AB²+AE²
        =>  CD²+ EB² =AD²+ AE²+AC²+AB²
        =>  CD²+ EB²= (
AD²+AE²)+(AB²+AC²)

        => CD²+ EB²= ED²+ CB²
        => CD²- CB² = ED²- EB² (dpcm

Xong r đó bạn, đúng đấy ko sai đâu, chép vào ^_^
 


 

 

14 tháng 7 2016

Qua trung diem M doan AB vẽ đường thẳng xx'vuông góc AB . Trên Mx lấy C và D còn trên Mx' lấy E

a) CM:AC= CB

b)CM: tam giác ACD = tam giác BCD

c) CM: goc EAD = goc EBD

25 tháng 1 2018

Xét Tgiác ADE là tam giác vuông tại A =>  DC2=AD2+AC2 ( Định lý Pytago)

Tương tự với các tam giác ABE, ADE , ABC vuông tại A thì: 

BE2 = AE2+AB2  

DE2=AD2+AE2

BC2= AB2+AC2

Ta có: 

DC2+BE2=(AD2+AC2)+(AE2+AB2)

=> DC2+BE2=AD2+AC2+AE2+AB2

=>  DC2+BE2=(AD2+AE2)+(AC2+AB2)

=> DC2+BE2= DE2+ BC2   (đpcm)

Đúng đó man. dùm :)

25 tháng 1 2018

Thêm Phần từ phần DC2+BE2=DE2+BC2 bỏ phần (đpcm) đi và thêm vào sau là

  => DC2-BE2=DE2-BC2          (đpcm)

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMRa)HB=AK                  b)Tính BH2+CK2Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,ADBài 16.Cho tam giác ABC vuông...
Đọc tiếp

Bài 12.Cho tam giác ABC có AB>AC.Vẽ AH vuông góc BC.CMR AB2-AC2=HB2-HC2

Bài 13.Cho tam giác ABC vuông tại A.Vẽ AH vuông góc BC.Biết AH=1.CMR BC2=HB2+HC2+2

Bài 14.Cho tam giác ABC vuông cân tại A,AB=1.Qua A vẽ đường thẳng xy bất kì.Vẽ AH và BK cùng vuông góc xy.CMR

a)HB=AK                  b)Tính BH2+CK2

Bài 15.Cho tam giác ABC vuông tại A,AB=6,góc B=30 độ.Tia phân giác góc C cắt AB tại D.Tính AB,AD

Bài 16.Cho tam giác ABC vuông cân tại A.Kẻ 1 đường thẳng d qua A.Từ B,C kẻ BH,CE vuông góc d(H,E nằm trên d).Chứng minh rằng tổng BH2+CE2 không phụ thuộc vị trí d

Bài 17.Cho O là điểm tùy ý nằm trong tam giác ABC.Vẽ OA1,OB1,OC1 lần lượt vuông góc với BC,CA,AB.CMR AB12+BC12+CA12=AC12+BA12+CB12

Bài 18.Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H nằm trên BC).Điểm D nằm giữa A và H.Trên tia đối của tia HA,lấy điểm E sao cho HE=AD.Đường thẳng vuông góc AH tại D cắt AC tại F.Chứng minh EB vuông góc EF

1
6 tháng 2 2017

B12:

Có:Tam giác ABH vuông tại H

     ________ACH__________

=>AB2-AC2=(AH2+BH2)-(AH2+CH2)=BH2-CH2.

27 tháng 6 2020

Câu b sai đề, sửa thành: DB2 + DC2 = 2DE2 + EB2 + EC2

a, Xét △ADB vuông tại A và △EDB vuông tại E

Có: DB là cạnh chung

      ABD = EBD (gt)

=> △ADB = △EDB (ch-gn)

=> AD = ED (2 cạnh tương ứng)

b, Xét △EDB vuông tại E có: BD2 = DE2 + EB2 (định lý Pytago)   (1)

Xét △DEC vuông tại E có: CD2 = DE2 + EC2 (định lý Pytago)      (2)

Cộng 2 vế (1) và (2) => DB2 + DC2 = DE2 + DE2 + EB2 + EC2

=> DB2 + DC2 = 2DE2 + EB2 + EC2

27 tháng 6 2020

a.Xét hai tam giác vuông ABD và tam giác vuông EBD có 

              góc BAD = góc BED = 90độ

             cạnh BD chung 

             góc ABD = góc EBD [ vì BD là phân giác góc B ]

Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)DA = DE [ cạnh tương ứng ]

b.Áp dụng định lí Py-ta-go vào tam giác vuông EBD có 

\(DB^2=EB^2+DE^2\)[ 1 ]

Áp dụng định lí Py-ta-go vào tam giác vuông EDC có 

\(DC^2=DE^2+EC^2\)[ 2 ]

Từ [ 1 ] và [ 2 ] suy ra 

\(DB^2+DC^2=EB^2+DE^2+DE^2+EC^2\)

\(\Rightarrow DB^2+DC^2=2DE^2+EB^2+EC^2\)

Học tốt