K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

Xét Tgiác ADE là tam giác vuông tại A =>  DC2=AD2+AC2 ( Định lý Pytago)

Tương tự với các tam giác ABE, ADE , ABC vuông tại A thì: 

BE2 = AE2+AB2  

DE2=AD2+AE2

BC2= AB2+AC2

Ta có: 

DC2+BE2=(AD2+AC2)+(AE2+AB2)

=> DC2+BE2=AD2+AC2+AE2+AB2

=>  DC2+BE2=(AD2+AE2)+(AC2+AB2)

=> DC2+BE2= DE2+ BC2   (đpcm)

Đúng đó man. dùm :)

25 tháng 1 2018

Thêm Phần từ phần DC2+BE2=DE2+BC2 bỏ phần (đpcm) đi và thêm vào sau là

  => DC2-BE2=DE2-BC2          (đpcm)

23 tháng 1 2015

Xét tam giác ADE là tam giác vuông tại A => DC²= AD²+AC² (định lí Py-ta-go)

      tam giác ABE là tam giác vuông tại A => BE²= AB²+AE²(định lí Py-ta-go)

      tam giác ADE là tam giác vuông tại A => DE²= AD²+AE²(định lí Py-ta-go)

      tam giác ABC là tam giác vuông tại A => BC²= AB²+AC²(định lí Py-ta-go)

Ta có : CD²+ EB² =(AD²+AC²)+(AB²+AE²)

        =>  CD²+ EB² =AD²+AC²+AB²+AE²
        =>  CD²+ EB² =AD²+ AE²+AC²+AB²
        =>  CD²+ EB²= (
AD²+AE²)+(AB²+AC²)

        => CD²+ EB²= ED²+ CB²
        => CD²- CB² = ED²- EB² (dpcm

Xong r đó bạn, đúng đấy ko sai đâu, chép vào ^_^
 


 

 

Áp dụng định lí pytago vào ΔADE vuông tại A, ta được

\(ED^2=AE^2+AD^2\)

Áp dụng định lí pytago vào ΔABE vuông tại A, ta được

\(BE^2=AE^2+AB^2\)

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

Áp dụng định lí pytago vào ΔACD vuông tại A, ta được

\(CD^2=AC^2+AD^2\)

Ta có: \(CD^2+EB^2=\left(AC^2+AD^2\right)+\left(AE^2+AB^2\right)=\left(AD^2+AE^2\right)+\left(AB^2+AC^2\right)=ED^2+CB^2\)

hay \(CD^2-CB^2=ED^2-EB^2\)(đpcm)

20 tháng 2 2020

+ Xét \(\Delta ACD\) vuông tại \(A\left(gt\right)\) có:

\(CD^2=AC^2+AD^2\) (định lí Py - ta - go) (1).

+ Xét \(\Delta ADE\) vuông tại \(A\left(gt\right)\) có:

\(ED^2=AE^2+AD^2\) (định lí Py - ta - go) (2).

+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(CB^2=AC^2+AB^2\) (định lí Py - ta - go) (3).

+ Xét \(\Delta AEB\) vuông tại \(A\left(gt\right)\) có:

\(EB^2=AE^2+AB^2\) (định lí Py - ta - go) (4).

Trừ vế (1) với (3) và trừ vế (2) với (4) ta được:

\(\left\{{}\begin{matrix}CD^2-CB^2=AC^2-AC^2+AD^2-AB^2=AD^2-AB^2\\ED^2-EB^2=AE^2-AE^2+AD^2-AB^2=AD^2-AB^2\end{matrix}\right.\)

\(\Rightarrow CD^2-CB^2=ED^2-EB^2\left(đpcm\right).\)

Chúc bạn học tốt!

14 tháng 7 2016

Qua trung diem M doan AB vẽ đường thẳng xx'vuông góc AB . Trên Mx lấy C và D còn trên Mx' lấy E

a) CM:AC= CB

b)CM: tam giác ACD = tam giác BCD

c) CM: goc EAD = goc EBD

8 tháng 7 2019

Tham khảo:Câu hỏi của Kaito1412_TV - Toán lớp 7 - Học toán với OnlineMath