K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)

Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)

Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)

Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :

\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)

Vậy số sản phẩm dự định là 750 sản phẩm

4 tháng 4 2021

Bài 3:

Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)

Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)

Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)

Theo bài ra, ta có phương trình:

\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)

\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)

\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)

Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm

Bài 3: 

a: \(A=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}:\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-4\right)}\)

\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-4\right)\left(x+3\right)}\cdot\dfrac{x+2}{x-1}=\dfrac{x+2}{x-1}\)

b: Để A=3/2 thì 3(x-1)=2(x+2)

=>3x-3=2x+4

=>x=7(nhận)

12 tháng 3 2022

Thiếu bạn nhé

28 tháng 10 2021

\(\Leftrightarrow4x^2-20x-4x^2+3x+12x-3=5\)

\(\Leftrightarrow-5x=8\)

hay \(x=-\dfrac{8}{5}\)

chụp rõ hơn một xíu đc ko bạn

19 tháng 9 2021

làm hô em vói ạ

19 tháng 9 2021

\(C=3x^{n-2+n+2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\\ C=3x^{2n}-y^{2n}\)

5 tháng 8 2021

 2(x-y)2 -y(x-y)2 +xy2-x2y= 2(x-y)2-y(x-y)2+(xy^2-x^2y)=2(x-y)2-y(x-y)2+xy(x-y)=(x-y)\(\left[2\left(x-y\right)-y\left(x-y\right)+xy\right]\)=(x-y)(2x-2y-xy+y2+xy)=(x-y)(2x-2y+y2)

\(2\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\left(2-y\right)+xy\left(y-x\right)\)

\(=\left(x-y\right)^2\cdot\left(2-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)\left(2-y\right)-xy\right]\)

Câu 10: C

Câu 11: A

Câu 12: A

Câu 13: C

Câu 14: B

12 tháng 3 2022

em cảm ơn ạ

 

\(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)

\(=\left(x-y\right)^2\left(x-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)

\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)

5 tháng 8 2021

x(x-y)2 -y(x-y)2+xy2-x2y=x(x-y)2 -y(x-y)2+(xy2-x2y)=x(x-y)2 -y(x-y)2+xy(x-y)=\(\left(x-y\right)\left[x\left(x-y\right)-y\left(x-y\right)+xy\right]\)=\(\left(x-y\right)\left[\left(x-y\right)^2+xy\right]\)

a: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

d: Ta có: \(x^2-2x+\left|y+1\right|+5\)

\(=\left(x-1\right)^2+\left|y+1\right|+4\ge4\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-1