Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
O là trung điểm của AC
Do đó: MO là đường trung bình của ΔABC
Suy ra: MO=BC/2=3(cm)
Bài 3:
\(a,=3x\left(y-4x+6y^2\right)\\ b,=5xy\left(x^2-6x+9\right)=5xy\left(x-3\right)^2\\ d,=\left(x+y\right)\left(x-12\right)\\ f,=2x\left(x-y\right)\left(5x-4y\right)\\ g,=\left(x-2\right)\left(x-2+3x\right)=\left(x-2\right)\left(4x-2\right)=2\left(x-2\right)\left(2x-1\right)\\ h,=x^2\left(1-5x\right)+3xy\left(5x-1\right)=x\left(1-5x\right)\left(x-3y\right)\\ i,=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\\ j,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ k,=4x^2-12x+3x-9=\left(x-3\right)\left(4x+3\right)\\ l,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ m,=x^2-\left(2y-6\right)^2=\left(x-2y+6\right)\left(x+2y-6\right)\\ n,=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\ =\left(x^2+5x+5\right)^2-1-24\\ =\left(x^2+5x+5\right)^2-25\\ =\left(x^2+5x\right)\left(x^2+5x+10\right)\\ =x\left(x+5\right)\left(x^2+5x+10\right)\)
a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)
b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)
c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)
Bài 2:
a. 3x(x - 6) - 2x2 = x2 + 6
<=> 3x2 - 18x - 2x2 - x2 - 6 = 0
<=> 3x2 - 2x2 - x2 - 18x - 6 = 0
<=> -18x - 6 = 0
<=> -18x = 6
<=> x = \(\dfrac{6}{-18}=\dfrac{-1}{3}\)
b. (x - 3)(x - 2) - 5 = x2 - 4x
<=> x2 - 2x - 3x + 6 - 5 - x2 + 4x = 0
<=> x2 - x2 - 2x - 3x + 4x + 6 - 5 = 0
<=> -x + 1 = 0
<=> -x = -1
<=> x = 1
c. (x + 5)2 - 8x = x2 + 15
<=> x2 + 10x + 25 - 8x - x2 - 15 = 0
<=> x2 - x2 + 10x - 8x + 25 - 15 = 0
<=> 2x + 10 = 0
<=> 2x = -10
<=> x = -5
d. x2 - 4x + 4 = 0
<=> x2 - 2.2.x + 22 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2
e. x2 + 8x + 16 = 0
<=> x2 + 2.x.4 + 42 = 0
<=> (x + 4)2 = 0
<=> x + 4 = 0
<=> x = -4
f. x2 - 36 = 0
<=> x2 - 62 = 0
<=> (x - 6)(x + 6) = 0
<=> \(\left[{}\begin{matrix}x-6-0\\x+6=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
g. (x + 3)2 - 16 = 0
<=> (x + 3)2 - 42 = 0
<=> (x + 3 + 4)(x + 3 - 4) = 0
<=> (x + 7)(x - 1) = 0
<=> \(\left[{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)
k: Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-2x^3+8\)
\(=x^3-8-2x^3+8\)
\(=-x^3\)