K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

28 tháng 1 2018
  • Xét \(\Delta CIA\)có NK//CI (gt)

--> \(\frac{AK}{AI}=\frac{AN}{AI}\)( định lí Talet )

--> AK . AI = AC . AN (1)

  • Xét \(\Delta ABK\)có BK// IM (gt)

--> \(\frac{AI}{AB}=\frac{AM}{AK}\)( định lí Talet )

--> AI . AK = AB . AM (2)

Từ (1)(2) --> AB . AM = AC. AN

              --> \(\frac{AB}{AN}=\frac{AC}{AM}\)

              --> MN // BC ( Định lí Talet đảo)

Thực ra bài này lớp 8 vẫn giải ngon mà, đâu cần đến lớp 9 đâu ạ.

9 tháng 8 2016

a. Quang tự vẽ hình nhé.

Ta thấy \(\frac{AM}{AC}=\frac{AM}{AK}.\frac{AK}{AC}\). Mà theo định lý Ta let : \(\frac{AM}{AK}=\frac{AI}{AB};\frac{AK}{AC}=\frac{AN}{AI}\)

Như vậy thì \(\frac{AM}{AC}=\frac{AI}{AB}.\frac{AN}{AI}=\frac{AN}{AB}\)

Từ đó suy ra \(\frac{AM}{AC}=\frac{AN}{AB}\) hay MN // BC.

26 tháng 4 2020

Bài 1 : Bạn tự vẽ hinh 

a,

I là trung điểm AC và IN//AB nên IN là đường trung bình trong tam giác ABC

Suy ra N là trung điểm BC

I là trung điểm AC và IM//BC nên IM là đường trung bình trong tam giác ABC

Suy ra M là trung điểm BA

Do đó MN là đường trung bình của tam giác ABC nên MN//AC và MN=1/2 AC=5 (cm) 

b,

MN// AC nên AMNC là hình thang

Mặt khác AM=1/2AB=1/2BC=CN

MN<AC nên AMNC là hình thang cân

IN //AB hay IN//BM

IM//BC hay IM//BN nên IMBN là hình bình hành

Mặt khác ABC cân tại B nên BI vuông góc với AC hay BI vuông góc với MN

Do đó IMBN là hình thoi

c,

IMBN là hình thoi nên O là trung điểm IB và MN

Tứ giác BICK có hai đường chéo BC và IK cắt nhau tại trung điểm mỗi đường nên BICK là hình bình hành

Do đó BK//IC//AI và BK=IC=IA

hay ABKI là hình bình hành

O là trung điểm của BI nên O cũng là trung điểm AK

Do vậy A,O,K thẳng hàng

26 tháng 4 2020

a) Ta có I là trung điểm AC; IN//AB 

=> IN là đường trung bình \(\Delta\)ABC

=> N là trung điểm BC

Cmtt: M là trung điểm AB

=> MN là đường trung bình \(\Delta\)ABC

=> MN//AC và \(MN=\frac{1}{2}AC=\frac{1}{2}\cdot10=5\left(cm\right)\)

b) Tứ giác AMNC có: MN//AC
=> Tứ giác AMNC là hình thang

Lại có: \(AM=\frac{1}{2}AB\)(do M là trung điểm AB)

\(AN=\frac{1}{2}CB\)(Do N là trung điểm AC)

\(AB=\frac{1}{2}CB\)(do \(\Delta\)ABC cân tại B)

=> AMNC là hình thang cân

Tứ giác IMBN có: IM//BN và IN//BM

=> Tứ giác IMBN là hình bình hành

Lại có MB=BN\(\left(=\frac{1}{2}AD=\frac{1}{2}BC\right)\)

=> IMBN là hình thoi

c) N là trung điểm IK và O là trung điểm BI

=> ON là đường trung bình của \(\Delta\)IBK

=> ON//BK và ON//AI

=> BK//AI

IN//AB => IK//AB

=> Tứ giác ABKI là hình bình hành

Có D là trung điểm BI

=> O là trung điểm của AK

=> O;A;K thẳng hàng

21 tháng 3 2021

a, Ta có: $HM⊥AB;HN⊥AC$

$⇒\widehat{HMA}=\widehat{HNA}=90^o$

$⇒\widehat{HMA}+\widehat{HNA}=180^o$

$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)

Nên $AH^2=AM.AB(1)$

Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)

Nên $AH^2=AN.AC(2)$

Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$

Xét tam giác $AMN$ và tam giác $ACB$ có:

$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung

$⇒$  tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$

(đpcm)

c,  tam giác $AMN$ $\backsim$ tam giác $ACB$

$⇒\widehat{ANM}=\widehat{ABC}$

Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)

Nên $\widehat{ANM}=\widehat{AEC}$

Hay  $\widehat{ANI}=\widehat{IEC}$

$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)

c, Ta có: $\widehat{ANM}=\widehat{ABC}$

Mà $\widehat{ABC}+\widehat{AKC}=180^o$

do tứ giác $ABCK$ nội tiếp $(O)$

Nên $\widehat{ANM}+\widehat{AKC}=180^o$

Mà $\widehat{ANM}+\widehat{ANK}=180^o$

Nên $\widehat{AKC}=\widehat{ANK}$

Xét tam giác $AKC$ và tam giác $ANK$ có:

$\widehat{AKC}=\widehat{ANK}$

$\widehat{A}$ chung

nên  tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$

$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$

$⇒AK^2=AN.AC$

mà $AH^2=AN.AC(cmt)$

$⇒AK^2=AH^2$

hay $AK=AH$

suy ra tam giác $AHK$ cân tại $A$undefined

 

21 tháng 3 2021

Nguyễn Lê Phước Thịnh

Akai Haruma     Trần Đức Mạnh  Nguyễn Việt Lâm

23 tháng 2 2018

Xét \(\Delta\)BHI có: góc HBI = 45o ( vì tam giác ABC vuông cân tại A)

                      và góc BHI = 90o ( vì HI \(\perp\)BA )

=> tam giác BHI vuông cân tại H => HB = HI (1)

Xét tứ giác HIKA có góc H = góc A = góc K = 90o => tứ giác HIKA là hình chữ nhật => AK = HI (2)

Từ (1) và (2), ta có: AK = HB

Ta có: M là trung điểm của BC (gt) => AM vừa là đường cao và cũng là đường phân giác => góc BAM = Góc MAC = 45o

Xét \(\Delta\)HBM và \(\Delta\)KAM có:

HB =AK ( c.m.t)

góc B = góc A  ( cùng bằng 45o )

MB = AM ( vì AM là trung tuyến của tam giác ABC vuông cân tại A) 

=> \(\Delta HBM=\Delta KAM\)(c.g.c)

=>HM = MK ( cặp cạnh tương ứng) => tam giác MHK cân (3)

=> góc BMH = góc AMK ( cặp góc tương ứng)

mà góc KMC + góc AMK = 90o => KMC + BMH = 90o => góc HMK = 90o (góc kề bù) (4)

Từ 3 và 4, ta được: tam giác MHK vuông cân tại M (đpcm)

23 tháng 2 2018

Bạn và hình giúp mình đc ko?  

P/s : cảm ơn bạn rất nhiều