Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C G M A' B' C' D E F H K N P
+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.
Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)
Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được
\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)
Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)
\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)
+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.
Áp dụng ĐL Thales, ta có các tỉ số:
\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)
Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)
+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
- Xét \(\Delta CIA\)có NK//CI (gt)
--> \(\frac{AK}{AI}=\frac{AN}{AI}\)( định lí Talet )
--> AK . AI = AC . AN (1)
- Xét \(\Delta ABK\)có BK// IM (gt)
--> \(\frac{AI}{AB}=\frac{AM}{AK}\)( định lí Talet )
--> AI . AK = AB . AM (2)
Từ (1)(2) --> AB . AM = AC. AN
--> \(\frac{AB}{AN}=\frac{AC}{AM}\)
--> MN // BC ( Định lí Talet đảo)
Thực ra bài này lớp 8 vẫn giải ngon mà, đâu cần đến lớp 9 đâu ạ.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
A B C C, G M B, C, H D
TA CÓ
\(\frac{MC,}{GC,}=\frac{S\Delta AMB}{S\Delta AGB}\left(1\right)\)
\(\frac{MB,}{GB,}=\frac{S\Delta AMC}{S\Delta AGC}\left(2\right)\)
DỰNG GH VÀ MD VUÔNG GÓC VỚI BC
AD ĐỊNH LÍ TA LÉT
=>\(\frac{MD}{GH}=\frac{MA,}{GA,}\)
MẶT KHÁC \(\frac{MD}{GH}=\frac{S\Delta BMC}{S\Delta BGC}\)
=> \(\frac{MA,}{GA,}=\frac{S\Delta BMC}{S\Delta BGC}\left(3\right)\)
TỪ 1 ,2,3
=> \(\frac{MA,}{GA,}+\frac{MB,}{GB,}+\frac{MC,}{GC,}=\frac{S\Delta AMB+S\Delta BMC+S\Delta AMC}{\frac{1}{3}S\Delta ABC}=\frac{3SABC}{SABC}=3\)
a. Quang tự vẽ hình nhé.
Ta thấy \(\frac{AM}{AC}=\frac{AM}{AK}.\frac{AK}{AC}\). Mà theo định lý Ta let : \(\frac{AM}{AK}=\frac{AI}{AB};\frac{AK}{AC}=\frac{AN}{AI}\)
Như vậy thì \(\frac{AM}{AC}=\frac{AI}{AB}.\frac{AN}{AI}=\frac{AN}{AB}\)
Từ đó suy ra \(\frac{AM}{AC}=\frac{AN}{AB}\) hay MN // BC.