Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N O I K P Q H S R L T E G
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đt tâm O đường kính AH cắt AB tại M, AC tại N.
1. Chứng minh rằng MN là đường kính của đt O và tứ giác BMNC nội tiếp.
2. Gọi I là trung điểm của BC, lấy P là điểm đối xứng vs A qua I, gọi Q là trung điểm của HP gọi K là giao điểm của MN và AI.
a, Chứng minh rằng AI vuông góc vs MN
b, Chứng minh rằng Q là tâm đường tròn ngoại tiếp tứ giác BMNC
bn đăng những câu này ít người trả lời tử tế lắm ha
Bài 1 : Bạn tự vẽ hinh
a,
I là trung điểm AC và IN//AB nên IN là đường trung bình trong tam giác ABC
Suy ra N là trung điểm BC
I là trung điểm AC và IM//BC nên IM là đường trung bình trong tam giác ABC
Suy ra M là trung điểm BA
Do đó MN là đường trung bình của tam giác ABC nên MN//AC và MN=1/2 AC=5 (cm)
b,
MN// AC nên AMNC là hình thang
Mặt khác AM=1/2AB=1/2BC=CN
MN<AC nên AMNC là hình thang cân
IN //AB hay IN//BM
IM//BC hay IM//BN nên IMBN là hình bình hành
Mặt khác ABC cân tại B nên BI vuông góc với AC hay BI vuông góc với MN
Do đó IMBN là hình thoi
c,
IMBN là hình thoi nên O là trung điểm IB và MN
Tứ giác BICK có hai đường chéo BC và IK cắt nhau tại trung điểm mỗi đường nên BICK là hình bình hành
Do đó BK//IC//AI và BK=IC=IA
hay ABKI là hình bình hành
O là trung điểm của BI nên O cũng là trung điểm AK
Do vậy A,O,K thẳng hàng
a) Ta có I là trung điểm AC; IN//AB
=> IN là đường trung bình \(\Delta\)ABC
=> N là trung điểm BC
Cmtt: M là trung điểm AB
=> MN là đường trung bình \(\Delta\)ABC
=> MN//AC và \(MN=\frac{1}{2}AC=\frac{1}{2}\cdot10=5\left(cm\right)\)
b) Tứ giác AMNC có: MN//AC
=> Tứ giác AMNC là hình thang
Lại có: \(AM=\frac{1}{2}AB\)(do M là trung điểm AB)
\(AN=\frac{1}{2}CB\)(Do N là trung điểm AC)
\(AB=\frac{1}{2}CB\)(do \(\Delta\)ABC cân tại B)
=> AMNC là hình thang cân
Tứ giác IMBN có: IM//BN và IN//BM
=> Tứ giác IMBN là hình bình hành
Lại có MB=BN\(\left(=\frac{1}{2}AD=\frac{1}{2}BC\right)\)
=> IMBN là hình thoi
c) N là trung điểm IK và O là trung điểm BI
=> ON là đường trung bình của \(\Delta\)IBK
=> ON//BK và ON//AI
=> BK//AI
IN//AB => IK//AB
=> Tứ giác ABKI là hình bình hành
Có D là trung điểm BI
=> O là trung điểm của AK
=> O;A;K thẳng hàng