Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Đường tròn (O)(O), đường kính AHAH có \(\widehat{AMH}\)=90∘
⇒HM⊥ABAMH^=90∘⇒HM⊥AB.
ΔAHBΔAHB vuông tại HH có HM⊥AB
⇒AH2=AB.AMHM⊥AB⇒AH2=AB.AM.
Chứng minh tương tự AH2=AC.ANAH2=AC.AN.
\(\Rightarrow\) AB.AM=AC.ANAB.AM=AC.AN.
B
Theo câu a ta có AB.AM=AC.AN
⇒AMAC=ANABAB.AM=AC.AN⇒AMAC=ANAB.
Tam giác AMNAMN và tam giác ACBACB có \(\widehat{MAN}\)MAN^ chung và AMAC=ANABAMAC=ANAB.
⇒ΔAMN∼ΔACB⇒ΔAMN∼ΔACB (c.g.c).
⇒\(\widehat{AMN}\)=\(\widehat{ACB}\)
c.
Tam giác ABCABC vuông tại AA có II là trung điểm của BC
⇒IA=IB=ICBC⇒IA=IB=IC.
⇒ΔIAC⇒ΔIAC cân tại I
⇒ \(\widehat{IAC}\)= \(\widehat{ICA}\)
Theo câu b ta có \(\widehat{AMN}\)= \(\widehat{ACB}\)
⇒ \(\widehat{IAC}\)= \(\widehat{AMN}\)
Mà \(\widehat{BAD}\)\(+\widehat{IAC}\)=90∘
⇒\(\widehat{BAD}\)+ \(\widehat{AMN}\)
=90∘
\(\Rightarrow\widehat{ADM}\)
=90∘BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.
Ta chứng minh ΔABCΔABC vuông tại AA có AH⊥BC
⇒AH2=BH.CHAH⊥BC⇒AH2=BH.CH.
Mà BC=BH+CH
⇒1AD=BH+CHBH.CH
⇒1AD=1HB+1HC.
\(\Rightarrow\) BMNCBMNC là tứ giác nội tiếp.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đt tâm O đường kính AH cắt AB tại M, AC tại N.
1. Chứng minh rằng MN là đường kính của đt O và tứ giác BMNC nội tiếp.
2. Gọi I là trung điểm của BC, lấy P là điểm đối xứng vs A qua I, gọi Q là trung điểm của HP gọi K là giao điểm của MN và AI.
a, Chứng minh rằng AI vuông góc vs MN
b, Chứng minh rằng Q là tâm đường tròn ngoại tiếp tứ giác BMNC
bn đăng những câu này ít người trả lời tử tế lắm ha