Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: $HM⊥AB;HN⊥AC$
$⇒\widehat{HMA}=\widehat{HNA}=90^o$
$⇒\widehat{HMA}+\widehat{HNA}=180^o$
$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)
Nên $AH^2=AM.AB(1)$
Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)
Nên $AH^2=AN.AC(2)$
Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$
Xét tam giác $AMN$ và tam giác $ACB$ có:
$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung
$⇒$ tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$
(đpcm)
c, tam giác $AMN$ $\backsim$ tam giác $ACB$
$⇒\widehat{ANM}=\widehat{ABC}$
Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)
Nên $\widehat{ANM}=\widehat{AEC}$
Hay $\widehat{ANI}=\widehat{IEC}$
$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)
c, Ta có: $\widehat{ANM}=\widehat{ABC}$
Mà $\widehat{ABC}+\widehat{AKC}=180^o$
do tứ giác $ABCK$ nội tiếp $(O)$
Nên $\widehat{ANM}+\widehat{AKC}=180^o$
Mà $\widehat{ANM}+\widehat{ANK}=180^o$
Nên $\widehat{AKC}=\widehat{ANK}$
Xét tam giác $AKC$ và tam giác $ANK$ có:
$\widehat{AKC}=\widehat{ANK}$
$\widehat{A}$ chung
nên tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$
$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$
$⇒AK^2=AN.AC$
mà $AH^2=AN.AC(cmt)$
$⇒AK^2=AH^2$
hay $AK=AH$
suy ra tam giác $AHK$ cân tại $A$
Gọi E là điểm đối xứng với A qua đường thẳng OI. Tia AI cắt (O) tại D khác A. DE giao BC tại F.
Ta thấy \(\Delta\)MIN và \(\Delta\)AIE cân tại I có ^IMN = ^IAE (Vì MN // AE vuông góc OI) => ^MIN = ^AIE => I,N,E thẳng hàng.
=> MN là đường trung bình \(\Delta\)AIE => AE = 2.MN, IE = 2.IN
Ta có: AE // IK (Cùng vuông góc OI) => ^KIE = ^IEA = ^IAE = ^BAE - ^BAD = ^BDx - ^DBC = ^BFD = ^KFE
=> Tứ giác KEIF nội tiếp => ^KEI = ^BFI (1)
Mặt khác: \(\Delta\)DFC ~ \(\Delta\)DCE (g.g) => DC2 = DF.DE => DI2 = DF.DE => \(\Delta\)DFI ~ \(\Delta\)DIE (c.g.c)
=> ^DFI = ^DIE = 2.^IAE = 2.^BFD (Vì ^IAE = ^BFD) => ^KIE = ^BFI (2)
Từ (1) và (2) => ^KIE = ^KEI => \(\Delta\)IKE cân tại K. Từ đó: \(\Delta\)IKE ~ \(\Delta\)AIE (g.g) => IE2 = IK.AE
Dễ thấy MJ là đường trung bình \(\Delta\)AIK => IK = 2.MJ. Kết hợp với AE = 2.MN (cmt)
Suy ra: IE2 = 4.MJ.MN hay AI2 = 4.MJ.MN => 4.MA2 = 4.MJ.MN => MA2 = MJ.MN => \(\Delta\)MJA ~ \(\Delta\)MAN (c.g.c)
=> ^MJA = ^MAN. Tương tự thì ^MJI = ^MIN => ^MJA + ^MJI = ^MAN + ^MIN => ^AJI = 1800 - ^ANI
Lại có: H là trực tâm \(\Delta\)AIN => ^AHI = 1800 - ^ANI. Do đó: ^AHI = ^AJI => Tứ giác AIHJ nội tiếp
=> ^AJH + ^AIH = 1800 <=> ^MJA + ^MJH + 900 - ^IAN = ^MJH + 900 = 1800 => ^MJH = 900
=> JH vuông góc MN. Mà OI cũng vuông góc MN nên JH // OI (đpcm).
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: Gọi giao EO và BC là P
AE//BC
AE vuông góc OE
=>OE vuông góc BC
=>OP vuông góc BC
=>P là trung điểm của BC
AEPH là hình chữ nhật
=>AE=PH
EJ giao BC=J
=>AE=JC
=>JC=HP
=>HJ=PC=BC/2=MN
=>HMNJ là hình bình hành
=>HM//NJ và HM=NJ
=>HM//EN và HM=EN
=>EMHN là hbh
=>K là trung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
1:Xét tứ giác CEHD có
góc CEH+góc CDH=180 độ
=>CEHD là tứ giác nội tiếp
2 Xét (O) có
ΔAKC nội tiếp
AK là đường kính
=>ΔACK vuông tại C
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AB*AC=AK*AD
Xét \(\Delta\)BHI có: góc HBI = 45o ( vì tam giác ABC vuông cân tại A)
và góc BHI = 90o ( vì HI \(\perp\)BA )
=> tam giác BHI vuông cân tại H => HB = HI (1)
Xét tứ giác HIKA có góc H = góc A = góc K = 90o => tứ giác HIKA là hình chữ nhật => AK = HI (2)
Từ (1) và (2), ta có: AK = HB
Ta có: M là trung điểm của BC (gt) => AM vừa là đường cao và cũng là đường phân giác => góc BAM = Góc MAC = 45o
Xét \(\Delta\)HBM và \(\Delta\)KAM có:
HB =AK ( c.m.t)
góc B = góc A ( cùng bằng 45o )
MB = AM ( vì AM là trung tuyến của tam giác ABC vuông cân tại A)
=> \(\Delta HBM=\Delta KAM\)(c.g.c)
=>HM = MK ( cặp cạnh tương ứng) => tam giác MHK cân (3)
=> góc BMH = góc AMK ( cặp góc tương ứng)
mà góc KMC + góc AMK = 90o => KMC + BMH = 90o => góc HMK = 90o (góc kề bù) (4)
Từ 3 và 4, ta được: tam giác MHK vuông cân tại M (đpcm)