Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C D l
a, Xét t/g AIB và t/g CID có:
IA = IC (gt)
IB = ID (gt)
góc AIB = góc CID (đối đỉnh)
=> t/g AIB = t/g CID (c.g.c)
b, Xét t/g AID và t/g CIB có
IA = IC (gt)
ID = IB (gt)
góc AID = góc CIB (đối đỉnh)
=> t/g AID = t/g CIB (c.g.c)
=> AD = BC ; góc IAD = góc ICB
=> AD // BC (vì có 2 góc so le trong bằng nhau)
c, Vì t/g AIB = t/g CID (câu a) => góc IAB = góc ICD = 90 độ
=> DC _|_ AC
A B C I D 1 2 3 4 1 1
Xét \(\Delta AIB;\Delta CID\) có :
\(\left\{{}\begin{matrix}IB=ID\\\widehat{I1}=\widehat{I2}\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\Delta AIB=\Delta CID\left(c-g-c\right)\)
Xét \(\Delta BIC;\Delta AID\) có :
\(\left\{{}\begin{matrix}IA=IC\\\widehat{I3}=\widehat{I4}\\IB=ID\end{matrix}\right.\)
\(\Leftrightarrow\Delta BIC=\Delta DIA\left(c-g-c\right)\)
\(\Leftrightarrow AD=BC\)
\(\Leftrightarrow\widehat{C1}=\widehat{A1}\)
Mà đây là 2 góc so le trong
\(\Leftrightarrow AD\) // \(BC\)
A I B C D 1 2 3 4 1 1 Giải
a) Xét \(\Delta AIB\) và \(\Delta CID\):
Ta có: AI = CI ( gt )
\(\widehat{I_2}=\widehat{I_4}\) ( đối đỉnh )
IB = ID ( gt )
\(\Rightarrow\Delta AIB=\Delta CID\left(c.g.c\right)\)
b) Xét \(\Delta AID\) và \(\Delta CIB\):
Ta có: AI = CI ( gt )
\(\widehat{I_1}=\widehat{I_3}\) ( đối đỉnh )
ID = IB ( gt )
\(\Rightarrow\Delta AID=\Delta CIB\left(c.g.c\right)\)
\(\Rightarrow AD=BC\) ( 2 cạnh tương ứng )
\(\Rightarrow\widehat{A_1}=\widehat{C_1}\)( 2 góc tương ứng và \(\Delta AID=\Delta CIB\) )
\(\Rightarrow AD//BC\)
a) Xét tam giác AIB và CID ta có
IA=IC(gt)
AIB=DIC(đói đỉnh)
IB=ID
=>tam giác AIB = tam gics CID
b) đề sai nha M là trung điểm của AB mới đúng nha bạn
Xét tam giác AIM và CIN ta có
IA=IC(gt)
MAC=DCA(vì tam giác AIB=CID)
AM=AB chia 2
CN=CDchia 2
AB=CD(vì tg AIB=tg CID)
=>AM=CN
=>tg AIM=TG CIN
=> IM=IN(tương ứng) (1)
=> GÓC AIM = CIN
mà A,I,C thảng hàng
=> M,I,N thẳng hàng (2)
kết hợp (1) và (2) => I là trung điểm của MN
c) trong tam giác ABC có A > 90độ
=> AIB < 90 độ
mà AIB+BIC=180 độ( 2 góc kề bù)
=> BIC > 90 độ
=> AIC<BIC (đpcm)
d)ta có : tam giac AIB = CID
=> ACD=A
AC vuông góc vs CD => ACD = 90 độ
=> A=90độ
=> tam giác ABC là Tam Giác Vuông Tại A
vậy để AC vuông góc vs CD
Thì tam Giác ABC phải vuông tại A
ok nha em
Thôi , khỏi vẽ hình nha ! Ngại lém !
a) Xét tam giác AIB và tam giác CID có :
AI = IC ( I là trung điểm AC )
Góc AIB = góc CID ( 2 góc đối đỉnh )
BI = DI ( GT )
=> Tam giác AIB = tam giác CID ( c - g - c )
b) Hình như phần này sai đề hay sao ý bạn ạ !
A B C D I H
a) Sửa lại nhé : KL : \(\Delta AID=\Delta BIC\)
Xét \(\Delta AID,\Delta BIC\) có :
\(IA=IC\) (I là trung điểm của AC)
\(\widehat{AID}=\widehat{BIC}\) (đối đỉnh)
\(IB=ID\left(gt\right)\)
=> \(\Delta AID=\Delta BIC\left(c.g.c\right)\) (*)
b) Xét \(\Delta ABI,\Delta CDI\) có :
\(IA=IC\) (I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\) (đối đỉnh)
\(IB=ID\left(gt\right)\)
=> \(\Delta ABI=\Delta CDI\left(c.g.c\right)\) (**)
=> \(AB=DC\) (2 cạnh tương ứng) => đpcm
- Từ (**) => \(\widehat{BAI}=\widehat{DCI}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
=> \(AB//CD\left(đpcm\right)\)
c) Xét \(\Delta ABC,\Delta CDA\) có :
\(AB=DC\) (cm câu b)
\(AC:Chung\)
\(AD=BC\) [từ (*)]
=> \(\Delta ABC=\Delta CDA\left(c.c.c\right)\)
d) Từ (*) suy ra : \(\widehat{IAD}=\widehat{ICB}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
=> \(AD//BC\) (đpcm)
Từ (*) ta cũng suy ra : AD = BC (2 cạnh tương ứng)
a) xét tam giác AIB zà tam giác CID có
AI=IC( do I là trung điểm của AC)
IB=ID
góc AIB = góc CID ( 2 góc đối đỉnh)
=> tam giác AIB = tam giác CID
b) tam giác AIB = tam giác CID (cmt)
=>góc ABI = góc CDI
mà 2 góc này ở zị trí sole trong
=> AB//CD
xét tam giác AID zà tam giác CIB có
AI=IC
BI=ID
góc AID= góc CIB
=> tam giác AID = tam giác CIB
=> AD=CB
bài cơ bản thế này học cho chắc nhá , mất gốc thì khổ lắm . Đại thì có chuyển đề riêng thì học được , nhưng hình thì liên quan đến nhau nhiều lắm