Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAB và ΔDAC có
EA=DA
góc EAB=góc DAC
AB=AC
Do đó: ΔEAB=ΔDAC
=>EB=DC
b: Xét ΔEBC và ΔDCB có
EB=DC
EC=DB
BC chung
Do đó: ΔEBC=ΔDCB
c: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc EAD=góc CAB
Do đó: ΔAED đồng dạng với ΔACB
=>góc AED=góc ACB
=>ED//BC
d: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc BC
mà DE//BC
nên AI vuông góc DE
b)ta có AB=AD(giả thiết)
=> CA là đường trung tuyến của BD
CA vuông góc với BD (t/g ABC vuông tại A)
=>CA là đường cao của BD
mà CA là đường trung tuyến của BD(chứng minh trên)
=>t/g BCD cân tại C
=>CA cũng là p/g của t/g ABC
=>góc BCA= góc DCA
Xét t/g BEC và t/g DEC
góc BCA= góc DCA
BC=CD(t/g BCD cân tại C)
EC: cạnh chung
Suy ra t/g BEC= t/g DEC(c-g-c)
c) trên trung tuyến CA có CE/AC=6-2/6=2/3
=>ba đường trung tuyến của t/g BCD đồng quy tại E
=>DE là đường trung tuyến của BC
=>DE đi qua trung điểm BC