Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Xét ΔBMI và ΔCME có
MI=ME
góc BMI=góc CME
MB=MC
Do đó: ΔBMI=ΔCME
a] Áp dụng định lí Py - ta - go vào tam giác vuông ABC có ;
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\) \(AC^2=BC^2-AB^2\)
\(\Leftrightarrow\) \(AC^2=10^2-6^2\)
\(\Leftrightarrow\) \(AC^2=64\)
\(\Rightarrow\) \(AC=8cm\)
Ta có ; \(AB=6cm\) , \(AC=8cm\) , \(BC=10cm\)
\(\Rightarrow\) \(BC\)lớn hơn \(AC\) lớn hơn \(AB\)
\(\Leftrightarrow\) góc \(A\) lớn hơn góc \(B\) lớn hơn góc \(C\) [ theo quan hệ giữa cạnh và góc đối diện ]
a) Xet tam giac ABM va tam giac CMK ta co:
AM=MK(gt)
BM=MC(M la trung diem BC)
goc AMB=goc KMC ( 2 goc doi dinh)
--> tam giac ABM= tam giac CMK (c-g-c)--> goc BAM = goc MKC hay goc BAM= goc AKC
ta co : goc AKC+goc ACK+goc KAC=180 ( tong 3 goc trong tam giac AKC)
ma goc AKC= goc BAM (cmt)
mem goc BAM+goc KAC+goc ACK=180
--> goc BAC+ goc ACK=180
---> 110+ goc ACK=180
---> goc ACK=180-110=70
b)ta co : goc BAC+goc BAD+ goc DAE+goc CAE=360
----> 110+90+ goc DAE+90=360
---> goc DAE=360-110-90-90=70
-ta co : AB=DA ( gt)
AB=CK ( tam giac ABM= tam giac MKC)
--> DA=CK
xet tam giac CAK va tam giacAED ta co"
CK=DA (cmt) , AC=AE (gt), goc ACK= goc DAE (=70)
--> tam giac CAK= tam giac AED ( c=g=c)
c) Keo dai KA cat DE tai H
ta co : goc HAE + goc EAC+goc CAK=180
ma goc AEH= goc CAK ( tam giac ADE= tam giac CAK)
nen goc HAE+goc AEH=180- goc EAC=180-90=90
ta co : goc HAE+goc AEH + goc AHE =180 ( tong 3 goc trong tam giac AHE)
--> 90+ goc AHE =180
--> goc AHE =180-90=90
--> AH vuong goc DE hay MA vuong goc DE
Xét \(\Delta BMI\)và \(\Delta CME\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)
\(MI=ME\left(gt\right)\)
Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)
Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.
Chúc bạn học tốt.