Tìm tất cả các cặp số nguyên tố ( p,q ) thỏa mãn :
\(p^2-2q^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
\(\Rightarrow p\) là số lẻ
Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)
mà \(p^2=2q^2+1\)
\(\Rightarrow4n^2+4n+1=2q^2+1\)
\(\Rightarrow2\left(2n^2+2n\right)=2q\)
\(\Rightarrow2n^2+2n=q\)
\(\Rightarrow2\left(n^2+n\right)=q\)
\(\Rightarrow q\) là số chẵn
mà \(q\) là số nguyên tố
\(\Rightarrow q=2\)
\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài
Ta có: \(p^2-2q^2=1\)
Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ
\(\Rightarrow p^2-1=2q^2\)
\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)
Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn
\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4
\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)
\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)
Vậy: (q;p) là (2;3)
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
p2-2q2=1
=>p2=2q+1(1)
Vì p2=2q+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)
Từ 1 và 2 => 4k2+4k+1=2q+1
=>2(2k2+2k)=2q
=>2k2+2k=q=> q là số chẵn Mà q là số nguyên tố => q=2
Thay q = 2 vào đề bài => p=3
Ta có:
\(p^2-2q^2=1\Rightarrow p^2=2q^2\)mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
\(\left(2k+1\right)^2=2q^2+1\Rightarrow q^2+1=2k\left(k+1\right)\Rightarrow q=2\)(vì q là số nguyên tố) tìm được p = 3
Vậy: \(\left(p;q\right)\in\left\{3;2\right\}\)
Ta có: Q(-1) = -(-1)2 + a.(-1) = -1 - a
Q(1) = -12 + a.1 = -1 + a
Mà Q(-1) = 2Q(1)
=> -1 - a = 2.(-1 + a)
=> -1 - a = -2 + 2a
=> -1 + 2 = 2a + a
=> 1 = 3a
=>a = 1 : 3
=> a = 1/3
Vậy a = 1/3
Ta có: p2−2q2=1p2-2q2=1
⇒p2=1+2q2 (1)⇒p2=1+2q2 (1)
Vì 1+2q21+2q2 lẻ
⇒p2⇒p2 lẻ
⇒p⇒p lẻ
⇒p⇒p có dạng 2k+12k+1
⇒p2=(2k+1)2=4k2+4k+1⇒p2=(2k+1)2=4k2+4k+1
Khi đó (1)⇔4k2+4k+1=1+2q2(1)⇔4k2+4k+1=1+2q2
⇒4k2+4k+1−1=2q2⇒4k2+4k+1-1=2q2
⇒4k2+4k=2q2⇒4k2+4k=2q2
⇒2(2k2+2k)=2q2⇒2(2k2+2k)=2q2
⇒2k2+2k=q2⇒2k2+2k=q2
Vì 2k2+ 2k2k2+ 2k chẵn
⇒q2⇒q2 chẵn
⇒q⇒q chẵn
Mà qq là số nguyên tố
⇒q=2⇒q=2
⇒p2−2.22=1⇒p2-2.22=1
⇒p2−2.4=1⇒p2-2.4=1
⇒p2−8=1⇒p2-8=1
⇒p2=9⇒p2=9
⇒p=3⇒p=3 (tm)
Vậy (p,q)=(3,2)