Cho S= 5+ 52+ 53+ .......+ 52020+ 52021. Tìm x, biết 4S+ 5= 5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\)
=>\(5\cdot S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\)
=>\(5S-S=5^2+5^3+...+5^{2021}+5^{2022}-5-5^2-5^3-...-5^{2020}-5^{2021}\)
=>\(4S=5^{2022}-5\)
=>\(4S+5=5^{2022}\)
Ta có A = 5 + 52 + 53 + ... + 52021
5A = 52 + 53 + 54 + ... + 52022
5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )
4A = 52022 - 5
A = \(\dfrac{5^{2022}-5}{4}\)
Tìm chữ số tận cùng của kết quả mỗi phép tính sau:
a. 4915
b. 5410
c. 1120+11921+200022
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{2019}\left(5+5^2\right)\\ =5+\left(5+5^2\right)\left(5+5^3+...+5^{2019}\right)\\ =5+31\left(5+5^3+...+5^{2019}\right)\)
Vậy BT chia 31 dư 5
Lời giải:
S-5=52+53+....+52020+52021$
Số số hạng của $S-5$: $(52021-52):1+1=51970$
$S-5=51970(52021+52):2=1353116905$
$5x=5S-(S-5)=5S-1353116905$
$\Rightarrow x=S-270623381=1353116905+5-270623381=1082493529$