K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

S-5=52+53+....+52020+52021$
Số số hạng của $S-5$: $(52021-52):1+1=51970$

$S-5=51970(52021+52):2=1353116905$

$5x=5S-(S-5)=5S-1353116905$

$\Rightarrow x=S-270623381=1353116905+5-270623381=1082493529$

12 tháng 12 2023

\(S=5+5^2+5^3+...+5^{2020}+5^{2021}\)

=>\(5\cdot S=5^2+5^3+5^4+...+5^{2021}+5^{2022}\)

=>\(5S-S=5^2+5^3+...+5^{2021}+5^{2022}-5-5^2-5^3-...-5^{2020}-5^{2021}\)

=>\(4S=5^{2022}-5\)

=>\(4S+5=5^{2022}\)

12 tháng 12 2023

5.S hay 4.S vậy bạn?

 

30 tháng 11 2023

5 <  5 + 52 + 53 +....+52020 + 52021 

Chứ em

30 tháng 11 2023

5= 5+52+53+...+52020+52021.

ủa bn có nhầm j ko?

8 tháng 9 2023

Ta có A = 5 + 52 + 53 + ... + 52021

5A = 52 + 53 + 54 + ... + 52022

5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )

4A = 52022 - 5

A = \(\dfrac{5^{2022}-5}{4}\)

8 tháng 9 2023

Tìm chữ số tận cùng của kết quả mỗi phép tính sau:

a. 4915

b. 5410

c. 1120+11921+200022

 

18 tháng 9 2021

\(A=5+5^2+5^3+...+5^{2021}\)

\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)

\(=5.6+5^2.6+...+5^{2020}.6\)

\(=6\left(5+5^2+...+5^{2020}\right)\)

Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6

⇒A không là số chính phương

18 tháng 9 2021

thanks

21 tháng 11 2021

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{2019}\left(5+5^2\right)\\ =5+\left(5+5^2\right)\left(5+5^3+...+5^{2019}\right)\\ =5+31\left(5+5^3+...+5^{2019}\right)\)

Vậy BT chia 31 dư 5

14 tháng 11 2023

Đễ