Viết đa thức sau thảnh tích: a^6 - b^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x+4\right)^2-1=\left(x+4-1\right)\left(x+4+1\right)=\left(x+3\right)\left(x+5\right)\)
\(x^2+8x+15=x\left(x+3\right)+5\left(x+3\right)=\left(x+3\right)\left(x+5\right)\)
\(\frac{-x^6}{125}-\frac{y^3}{64}\)
\(=\frac{-\left(x^2\right)^3}{5^3}-\frac{y^3}{4^3}\)
\(=\left(\frac{-x^2}{5}\right)^3-\left(\frac{y}{4}\right)^3\)
\(=\left(\frac{-x^2}{5}-\frac{y}{4}\right)\cdot\left(\frac{x^4}{25}-\frac{x^2y}{20}+\frac{y^2}{16}\right)\)
Tham khảo nhé~
\(x^3+27y^3=x^3+\left(3y\right)^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
\(a^6-8b^3=\left(a^2\right)^3-\left(2b\right)^3=\left(a^2-2b\right)\left(a^4+2a^2b+4b^2\right)\)
\(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(8z^3+x^3=\left(2z\right)^3+x^3=\left(2z+x\right)\left(4z^2-2xz+x^2\right)\)
x3+6x2+11x+6=x3+6x2+9x+2x+6
=x.(x2+6x+9)+2.(x+3)
=x.(x2+3x+3x+9)+2.(x+3)
=x.[x.(x+3)+3.(x+3)]+2.(x+3)
=x.(x+3)(x+3)+2.(x+3)
=(x+3)[x.(x+3)+2]
=(x+3)(x2+3x+2)
=(x+3)(x2+x+2x+2)
=(x+3)[x.(x+1)+2.(x+1)]
=(x+1)(x+2)(x+3)
a/ \(\left(a^2-b^2+1\right)\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\)
b/ \(\left(x+y-1\right)\left(y^2-xy+y+x^2+x+1\right)\)
a) \(a^2+2a+1-b^2\)
\(=\left(a+1\right)^2-b^2\)
\(=\left(a+1-b\right)\left(a+1+b\right)\)
b) \(4a^2+4a+1-9b^2\)
\(=\left(2a\right)^2+4a+1-\left(3b\right)^2\)
\(=\left(2a+1\right)^2-\left(3b\right)^2\)
\(=\left(2a+1-3b\right)\left(2a+1+3b\right)\)
\(Sửa,đề:x^2-10x+25\\ =x^2-2x.5+5^2=\left(x-5\right)^2=\left(x-5\right)\left(x-5\right)\\---\\ b,x^3+125=x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\\ ---\\ 8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
a, Bạn xem lại đề vì không thể tách được.
b, \(x^3+125\\ =x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\)
c, \(8x^3-y^3\\ =\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(a,=8\left(x^3-125\right)=8\left(x-5\right)\left(x^2+5x+25\right)\\ b,=\left(0,1+4x\right)\left(0,01-0,4x+16x^2\right)\\ c,=\left(x+\dfrac{1}{5}y\right)\left(x^2-\dfrac{1}{5}xy+\dfrac{1}{25}y^2\right)\\ d,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ e,=\left(x-1+3\right)\left[\left(x-1\right)^2-3\left(x-1\right)+9\right]\\ =\left(x+2\right)\left(x^2-2x+1-3x+3+9\right)\\ =\left(x+2\right)\left(x^2-5x+13\right)\\ f,=\left(\dfrac{x^2}{2}-y^2\right)\left(\dfrac{x^4}{4}+\dfrac{x^2y^2}{2}+y^4\right)\)
\(\left(a^6-b^3\right)=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)