dự đoán kết quả tổng : s = 1+3+5 ....+ ( 2n-1) với n
∈ N*Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng: \(S=1+3+5+..+\left(2n-3\right)+\left(2n-1\right)\)
Ta có:
\(1+\left(2n-1\right)=1+2n-1=2n\)
\(3+\left(2n-3\right)=3+2n-3=2n\)
\(5+\left(2n-5\right)=5+2n-5=2n\)
.....
\(n+\left(2n-n\right)=n+2n-n=2n\)
Vậy tổng của dãy S là:
\(S=\dfrac{n}{2}\cdot2n=\dfrac{n\cdot2n}{2}=\dfrac{2n^2}{2}=n^2\)
a)n = 1 ⇒ 31 = 3 < 8 = 8.1
n = 2 ⇒ 32 = 9 < 16 = 8.2
n = 3 ⇒ 33 = 27 > 24 = 8.3
n = 4 ⇒ 34 = 81 > 32 = 8.4
n = 5 ⇒ 35 = 243 > 40 = 8.5
b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3
- n = 3, bất đẳng thức đúng
- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:
3k > 8k
Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:
3(k + 1) > 8(k + 1)
Thật vậy, từ giả thiết quy nạp ta có:
3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k
k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8
Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)
Vậy bất đẳng thức đúng với mọi n ≥ 3
#include <bits/stdc++.h>
using namespace std;
long long s,i,n;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++)
if (i%2==1) s=s+i*i;
cout<<s;
return 0;
}
Hôm nay olm.vn sẽ hướng dẫn các em chứng minh biểu thức bằng phương pháp quy nạp toán học.
D = 13 + 23 + 33 + ...+n3 (n \(\in\) N*)
D = \(\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
Với n = 1 ta có: D = 13= 1. D = \(\left(\dfrac{\left(1+1\right).1}{2}\right)^2\) = 1 (biểu thức đúng)
Giả sử biểu thức đúng với n = k; k \(\in\) N* tức:
13 + 23 + 33 + ...+ k3 = \(\left(\dfrac{\left(n+1\right)n}{2}\right)^2\) (đúng với ∀ k \(\in\) N*)
Ta cấn chứng minh: biểu thức đúng với n = k + 1; k \(\in\) N*
Nghĩa là: CM 13 + 23 +...+ (k+1)3 = \(\left(\dfrac{\left(k+2\right)\left(k+1\right)}{2}\right)^2\)
Thật vậy với n = k + 1 ta có:
D = 13 + 23 + 33 + ....+ (k+1)3 = (13+ 23 + 33 + ...+ k3) + (k+1)3
D = ( \(\dfrac{k\left(k+1\right)}{2}\))2 + (k+1)3 = (k+1)2.(\(\dfrac{k^2}{4}\) + (k+1))
D = (k+1)2.(\(\dfrac{k^2+4k+4}{4}\)) = (k+1)2. ( \(\dfrac{k+2}{2}\))2
D = \(\left(\dfrac{\left(k+2\right)\left(k+1\right)}{2}\right)^2\)(đpcm)
Vậy 13 + 23 + 33 +...+ n3 = \(\left(\dfrac{\left(n+1\right)n}{2^{ }}\right)^2\) (∀ n \(\in\)N*)
#include <bits/stdc++.h>
using namespace std;
long long i,n;
double s;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++)
s=s+((1*1.0)/(2*(i*1.0+1*1.0)));
cout<<fixed<<setprecision(2)<<s;
return 0;
}
uses crt;
var i,n,s:integer;
begin
clrscr;
write('n='); readln(n);
s:=0;
for i:=1 to n do
if i mod 2=1 then s:=s+i;
writeln('Tong cac so le trong khoang tu 1 toi ',n,' la: ',s);
readln;
end.
Bài 1:
uses crt;
var n,i:integer;
s:real;
begin
clrscr;
write('Nhap n='); readln(n);
s:=0;
for i:=1 to n do
s:=s+1/(2*i+1);
writeln(s:4:2);
readln;
end.
\(u_1=1;u_2=4=2^2;u_3=9=3^2\)
Dự đoán: \(u_n=n^2\)
- Với \(n=1;2;3\) dãy đúng
- Giả sử \(u_k=k^2\)
- Ta cần chứng minh \(u_{k+1}=\left(k+1\right)^2\)
Thật vậy, ta có:
\(u_{k+1}=u_k+2k+1=k^2+2k+1=\left(k+1\right)^2\) (đpcm)
\(S=1+3+5...+\left(2n-1\right)\)
Ta thấy \(1+\left(2n-1\right)=2n;3+\left(2n-3\right)=2n...;n+\left(2n-n\right)=2n\)
\(\Rightarrow S=\dfrac{n}{2}.2n=n^2\)
n2