K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành

\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)

Vậy ... 

16 tháng 5 2021
ĐKXĐ: x ≠ y ; y ≥ − 1 Đặt 1 x − y = a ; √ y + 1 = b (ĐK: a ≠ 0 ; b ≥ 0 ) Khi đó hệ phương trình trở thành { 2 a + b = 4 a − 3 b = − 5 ⇔ { 6 a + 3 b = 12 a − 3 b = − 5 ⇔ { 7 a = 7 b = 4 − 2 a ⇔ { a = 1 ( tm ) b = 2 ( tm ) Với ⎧ ⎪ ⎨ ⎪ ⎩ a = 1 b = 2 ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ 1 x − y = 1 √ y + 1 = 2 ⇒ { x − y = 1 y + 1 = 4 ⇔ { x − 3 = 1 y = 3 ⇔ { x = 4 ( tm ) y = 3 ( tm ) Vậy hệ phương trình đã cho có nghiệm { x = 4 y = 3 . 2) Xét phương trình hoành độ giao điểm giữa đường thẳng ( d ) và Parabol ( P ) là: x 2 = 2 ( m − 1 ) x − m 2 + 2 m ⇔ x 2 − 2 ( m − 1 ) x + m 2 − 2 m = 0 (1) a) Với m = 2 phương trình (1) trở thành: x 2 − 2 ( 2 − 1 ) x + 2 2 − 2.2 = 0 ⇔ x 2 − 2 x = 0 ⇔ x ( x − 2 ) = 0 ⇔ [ x = 0 x = 2 - Với x = 0 ⇒ y = 0 2 = 0 ⇒ A ( 0 ; 0 ) - Với x = 2 ⇒ y = 2 2 = 4 ⇒ B ( 2 ; 4 ) Vậy khi m = 2 thì ( P ) cắt ( d ) tại hai điểm phân biệt A ( 0 ; 0 ) ; B ( 2 ; 4 ) . b) Ta có: Δ ′ = b ′ 2 − a c = [ − ( m − 1 ) ] 2 − ( m 2 − 2 m ) = m 2 − 2 m + 1 − m 2 + 2 m = 1 > 0 Do Δ ′ > 0 nên phương trình (1) luôn có hai nghiệm phân biệt x 1 ; x 2 với mọi m . ⇒ Đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ x 1 ; x 2 với mọi m . Khi đó theo hệ thức Viet, ta có: { x 1 + x 2 = 2 m − 2 x 1 x 2 = m 2 − 2 m Để đường thẳng ( d ) cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau ⇔ x 1 + x 2 = 0 ⇔ 2 m − 2 = 0 ⇔ m = 1 ( tm ) Vậy m = 1 thì đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau.
16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành 

\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)

Vậy ... 

4 tháng 6 2021

1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)       ĐKXĐ:x≥o,y≠1

\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)

vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)

2,a, xét pthđgđ của (d) và (p) khi m=3:

x\(^2\)=3x-1⇔\(x^2-3x+1=0\)

Δ=(-3)\(^2\)-4.1.1=5>0

⇒pt có 2 nghiệm pb

\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)

thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))

thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

b,xét pthđgđ của (d) và (p) :

\(x^2=mx-1\)\(x^2-mx+1=0\) (*)

                       Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4

⇒pt có hai nghiệm pb⇔Δ>0

                                  ⇔m\(^2\)-4>0⇔m>16

với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét ta có:

(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)

\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3

\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)

thay  (I) vào (**) ta được:

1.m=3⇔m=3 (TM m≠0)

vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3

                      

 

 

NV
24 tháng 1 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-2\right)x+5\Leftrightarrow x^2-2\left(m-2\right)x-5=0\)

Do \(ac=-5< 0\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu

\(\Rightarrow x_1< 0< x_2\Rightarrow x_2+2>0\)

Theo hệ thức Viet: \(x_1+x_2=2\left(m-2\right)\)

Ta có:

\(\left|x_1\right|-\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1-x_2-2=10\)

\(\Leftrightarrow-2\left(m-2\right)=12\)

\(\Leftrightarrow m=-4\)

21 tháng 4 2016

Phương trình hoành độ giao điểm của (C) và Ox :

\(\frac{mx^2+x+m}{x-1}=0\Leftrightarrow mx^2+x+m=0\left(1\right)\)\(x\ne1\)

Đặt \(f\left(x\right)=mx^2+x+m\)

(C) cắt Ox tại 2 điểm phân biệt có hoành độ dương

\(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt khác 1

\(\Leftrightarrow\begin{cases}m\ne0\\\Delta=1-4m^2>0\\f\left(1\right)=1+2m\ne0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\)

Vậy với \(\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\) thì điều kiện bài toán thỏa mãn

NV
4 tháng 5 2021

1.

Đặt \(\left(x+1\right)^2=t\ge0\) ta được:

\(t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

2.

Phương trình hoành độ giao điểm:

\(-\dfrac{2}{3}x^2=mx-1\Leftrightarrow2x^2+3mx-3=0\) (1)

Do \(ac=-6< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3m}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)

\(x_1+x_2=-5\Leftrightarrow-\dfrac{3m}{2}=-5\)

\(\Leftrightarrow m=\dfrac{10}{3}\)

NV
22 tháng 4 2022

Chắc đề đúng là: (P): \(y=x^2\)

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=2mx-4\Leftrightarrow x^2-2mx+4=0\) (1)

Để (d) cắt (P) tại 2 điểm pb có hoành độ dương 

\(\Leftrightarrow\) (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-4>0\\x_1+x_2=2m>0\\x_1x_2=4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m>2\)

22 tháng 4 2022

NV
23 tháng 1 2021

Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)

\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)

 \(\Leftrightarrow\left(x_2-x_1\right)^2=64\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)

\(\Leftrightarrow4\left(m-2\right)^2+20=64\)

\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)

15 tháng 11 2023

a:

Để (d1): y=(m-2/3)x+1 là hàm số bậc nhất thì m-2/3<>0

=>m<>2/3

Để (d2): y=(2-m)x-m là hàm số bậc nhất thì 2-m<>0

=>m<>2

Để hai đường thẳng cắt nhau thì \(m-\dfrac{2}{3}< >2-m\)

=>\(2m< >\dfrac{2}{3}+2=\dfrac{8}{3}\)

=>\(m< >\dfrac{4}{3}\)

b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\-m< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=2+\dfrac{2}{3}=\dfrac{8}{3}\\m< >-1\end{matrix}\right.\Leftrightarrow m=\dfrac{4}{3}\)

c: Thay x=4 vào y=(m-2/3)x+1, ta được:

\(y=4\left(m-\dfrac{2}{3}\right)+1=4m-\dfrac{8}{3}+1=4m-\dfrac{5}{3}\)

Thay x=4 và y=4m-5/3 vào y=(2-m)x-m, ta được:

\(4\left(2-m\right)-m=4m-\dfrac{5}{3}\)

=>\(8-5m=4m-\dfrac{5}{3}\)

=>\(-9m=-\dfrac{5}{3}-8=-\dfrac{29}{3}\)

=>\(m=\dfrac{29}{27}\)

d: Để hai đường cắt nhau tại 1 điểm trên trục tung thì \(\left\{{}\begin{matrix}-m=1\\m-\dfrac{2}{3}< >2-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\2m< >\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow m=-1\)

e: Để hai đường cắt nhau tại trục hoành thì 

\(\left\{{}\begin{matrix}m-\dfrac{2}{3}< >2-m\\-\dfrac{1}{m-\dfrac{2}{3}}=\dfrac{-\left(-m\right)}{2-m}=\dfrac{m}{2-m}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m< >\dfrac{8}{3}\\-1\left(2-m\right)=m\left(m-\dfrac{2}{3}\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{2}{3}m=-2+m=m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{5}{3}m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\3m^2-5m+6=0\end{matrix}\right.\)

=>\(m\in\varnothing\)

17 tháng 5 2017

Xét phương trình hoành độ giao điểm: 

\(x^2=\left(m+2\right)x-m+6\Rightarrow x^2-\left(m+2\right)x+m-6=0\)

Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ dương thì phương trình trên phải có hai nghiệm phân biệt cùng dương, tức là:

\(\hept{\begin{cases}\Delta>0\\S>0\\p>0\end{cases}}\Rightarrow\hept{\begin{cases}\left(m+2\right)^2-4\left(m-6\right)>0\\m+2>0\\m-6>0\end{cases}\Rightarrow\hept{\begin{cases}m^2+28>0\\m>6\end{cases}}\Rightarrow m>6}\)