K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 11 2015
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
2 tháng 12 2018
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
a:
Để (d1): y=(m-2/3)x+1 là hàm số bậc nhất thì m-2/3<>0
=>m<>2/3
Để (d2): y=(2-m)x-m là hàm số bậc nhất thì 2-m<>0
=>m<>2
Để hai đường thẳng cắt nhau thì \(m-\dfrac{2}{3}< >2-m\)
=>\(2m< >\dfrac{2}{3}+2=\dfrac{8}{3}\)
=>\(m< >\dfrac{4}{3}\)
b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\-m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=2+\dfrac{2}{3}=\dfrac{8}{3}\\m< >-1\end{matrix}\right.\Leftrightarrow m=\dfrac{4}{3}\)
c: Thay x=4 vào y=(m-2/3)x+1, ta được:
\(y=4\left(m-\dfrac{2}{3}\right)+1=4m-\dfrac{8}{3}+1=4m-\dfrac{5}{3}\)
Thay x=4 và y=4m-5/3 vào y=(2-m)x-m, ta được:
\(4\left(2-m\right)-m=4m-\dfrac{5}{3}\)
=>\(8-5m=4m-\dfrac{5}{3}\)
=>\(-9m=-\dfrac{5}{3}-8=-\dfrac{29}{3}\)
=>\(m=\dfrac{29}{27}\)
d: Để hai đường cắt nhau tại 1 điểm trên trục tung thì \(\left\{{}\begin{matrix}-m=1\\m-\dfrac{2}{3}< >2-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\2m< >\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow m=-1\)
e: Để hai đường cắt nhau tại trục hoành thì
\(\left\{{}\begin{matrix}m-\dfrac{2}{3}< >2-m\\-\dfrac{1}{m-\dfrac{2}{3}}=\dfrac{-\left(-m\right)}{2-m}=\dfrac{m}{2-m}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m< >\dfrac{8}{3}\\-1\left(2-m\right)=m\left(m-\dfrac{2}{3}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{2}{3}m=-2+m=m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{5}{3}m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\3m^2-5m+6=0\end{matrix}\right.\)
=>\(m\in\varnothing\)