K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(A=x.\left(x+1\right)\left(x-3\right)\left(x+4\right)\)

\(=\left(x^2+x\right)\left(x^2+x-12\right)\)

đặt \(x^2+x-6\)=y

\(A=\left(y+6\right)\left(y-6\right)\)

\(=y^2-36\)\(\ge-36\)

dấu = xảy ra khi \(x^2+x-6=0\)

x=2 hoặc x=-3

20 tháng 6 2016

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\) nên x+1=0

=>x=0-1

=>x-1

20 tháng 6 2016

a:x+1/10+x+1/11+x+1/12=x+1/13+x+1/14

 <=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14) 
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0 
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0) 
<=>x= -1

b:hình như sai đề

8 tháng 9 2017

Đặt \(\hept{\begin{cases}a=x-1\\b=y-1\\c=z-1\end{cases}}\)\(-1\le a,b,c\le1\) và \(a+b+c=0\)

\(T=(a+1)^4+(b+1)^4+(c+1)^4-12abc\)

\(=a^4+b^4+c^4+4(a^3+b^3+c^3)+6(a^2+b^2+c^2)+4(a+b+c)+3-12abc\)

Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=0\). Do đó:

\(T=a^4+b^4+c^4+6(a^2+b^2+c^2)+3\ge3\)

Xảy ra khi \(a=1;b=-1;c=0\)

8 tháng 9 2017

và các hoán vị nhé dấu = ấy

23 tháng 5 2021

c

hok tốt nha bạn

15 tháng 8 2017

Ta có (x-3)2 và (x+4)2 luôn lớn hơn hoặc bằng không

muốn (x-3)2+(x+4)2 nhỏ nhất thì (x-3)2 và (x+4)2 phải nhỏ nhất

=> (x-3)2=0(=>x-3=0=>x=3)

=> (x+4)2=0(=>x+4=0=>x=-4)

min (x-3)2+(x+4)2=0

15 tháng 8 2017

\(\left(x-3\right)^2+\left(x+4\right)^2\)

\(=x^2-6x+9+x^2+8x+16\)

\(=2x^2+2x+25\)

\(=\left(\sqrt{2}x+\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{49}{2}\)

Vậy: Min là \(\dfrac{49}{2}\) khi \(x=\dfrac{-1}{2}\)