Mình Nhầm
tìm min của A:x*(x-3)*(x+1)*(x=4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\) nên x+1=0
=>x=0-1
=>x-1
Dãy trên có số chữ X là : ( 28 - 1 ) : 3 + 1 = 10 số có 3 vì khoảng cách giữa các số là 3.
10 chữ số X tương ứng với dãy trên có 10 số hạng .
Tổng các số của dãy trên là : ( 1 + 28 ) * 10 : 2 = 145
X = ( 155 - 145 ) : 10 = 1
A : X =1.
Đề nghe cứ sao sao ý (mk góp ý thui đừng ném gạch đá nha)
\(A=x\left(x+2\right)\left(x+4\right)\left(x+6\right)+8\)
\(A=\left(x^2+6x\right)\left(x^2+6x+8\right)+8\)
Đặt \(t=x^2+6x\)
\(A=t\left(t+8\right)+8\)
\(A=t^2+8x+16-8\)
\(A=\left(t+4\right)^2-8\ge-8\left(\forall t\right)\)
\("="\Leftrightarrow t=-4\Leftrightarrow x^2+6x+4=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3-\sqrt{5}\\x=-3+\sqrt{5}\end{cases}}\)
A = \(\frac{x}{x-1}+\frac{x}{x+1}+\frac{2-x^2}{1-x^2}\)
= \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)+ \(\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)\(+\frac{x^2-2}{x^2-1}\)
= \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)\(+\frac{x^2-2}{\left(x-1\right)\left(x+1\right)}\)
= \(\frac{x\left(x+1\right)+x\left(x-1\right)+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
=\(\frac{x^2+x+x^2-x+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
=\(\frac{3x^2-2}{\left(x-1\right)\left(x+1\right)}\)
cậu xem lại đề nha