\(\frac{200}{x}\)+ \(\frac{100}{x-10}\)- \(\frac{300}{x}\)= \(\frac{1}{2}\)
Bài giải pt nhà
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
=> \(\frac{1}{5}.A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}+\frac{1}{5^{100}}\)
=> \(A-\frac{1}{5}A=\frac{4}{5}.A=1-\frac{1}{5^{100}}\Rightarrow\frac{4}{5}.A=\frac{5^{100}-1}{5^{100}}\Rightarrow A=\frac{5^{100}-1}{4.5^{99}}\)
Tính \(\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}=\frac{1}{25}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{380}\right)\)
\(=\frac{1}{25}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)=\frac{1}{25}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)\(=\frac{1}{25}.\left(1-\frac{1}{20}\right)=\frac{19}{20.25}=\frac{19}{4.5^3}\)
vậy phương trình đã cho trở thành:
\(\frac{5^{100}-1}{4.5^{99}}.x+\frac{1}{4.5^{99}.x}=\frac{19}{4.5^3}\Rightarrow\left(5^{100}-1\right)x^2+1=19.5^{96}.x\)
\(\left(5^{100}-1\right)x^2-19.5^{96}.x+1=0\)
bạn kiểm tra lại đề lần nữa, phương trình này có nghiệm rất lẻ , nghiệm lớn
Điều kiện : \(x\ne\pm1\)
\(\frac{x+4}{x+1}+\frac{x}{x-1}=\frac{2x^2}{x^2-1}\)
\(\Rightarrow\frac{\left(x+4\right)\left(x-1\right)+x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{2x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\left(x+4\right)\left(x-1\right)+x\left(x+1\right)=2x^2\)
\(\Rightarrow x^2-x+4x-4+x^2+x=2x^2\)
\(\Rightarrow2x^2+4x+4=2x^2\)
\(\Rightarrow\left(x^2+4x+4\right)=2x^2-x^2\)
\(\Rightarrow\left(x+2\right)^2=x^2\)
\(\Rightarrow\left|x+2\right|=\left|x\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=x\\x+2=-x\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\in\varnothing\\x=1\end{array}\right.\) (loại )
Vậy phương trình vô nghiệm
\(\frac{x-342}{15}\) + \(\frac{x-323}{17}\) + \(\frac{x-300}{19}\) + \(\frac{x-273}{21}\) =10
giải pt
Ta có : \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
=> \(\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)
=> \(\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
=> \(\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
Vì \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)
=> x - 357 = 0
=> x = 357
Vậy x = 357
\(\Leftrightarrow\frac{200\left(x+20\right)}{2x\left(x+20\right)}-\frac{240x}{2x\left(x+20\right)}=\frac{x\left(x+20\right)}{2x\left(x+20\right)}\) đk: x\(\ne0\) , x \(\ne-20\)
\(\Rightarrow200x+4000-240x=x^2+20x\)
\(\Leftrightarrow-x^2-60x+4000=0\)
\(\Leftrightarrow x^2+60x-4000=0\)
\(\Leftrightarrow x^2+100x-40x-4000=0\)
\(\Leftrightarrow\left(x+100\right)\left(x-40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+100=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-100\left(tmđk\right)\\x=40\left(tmđk\right)\end{matrix}\right.\)
Vậy S\(=\left\{-100;40\right\}\)
\(\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2}\)
\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2},x\ne0,x\ne-20\)
\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{200\left(x+20\right)-240x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow\frac{200x+4000-240x-x^2-20x}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow-60x+4000-x^2=0\)
\(\Leftrightarrow-x^2-60x+4000=0\)
\(\Leftrightarrow x^2+60x-4000=0\)
\(\Leftrightarrow\frac{-60\pm\sqrt{60^2}-4.1\left(-4000\right)}{2}\)
\(\Leftrightarrow\frac{-60\pm\sqrt{3600+16000}}{2}\)
\(\Leftrightarrow\frac{-60\pm\sqrt{19600}}{2}\)
\(\Leftrightarrow\frac{-60\pm140}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-60+140}{2}\\\frac{-60-140}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-100\end{matrix}\right.,x\ne0,x\ne-20\)
ĐKXĐ: x ≠ \(\pm\) 1
Từ phương trình ban đầu suy ra:
\(x^2\left(x+1\right)^2+x^2\left(x-1\right)^2=\frac{10}{9}.\left(x^2-1\right)^2\)
⇒ \(x^4+2x^3+x^2+x^4-2x^3+x^2=\frac{10}{9}\left(x^4-2x^2+1\right)\)
⇒ \(18\left(x^4+x^2\right)=10\left(x^4-2x^2+1\right)\)
⇒ \(4x^4+19x^2-5=0\Leftrightarrow\left(x^2+5\right)\left(4x^2-1\right)=0\)
⇔ \(x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)( thỏa mãn ĐKXĐ)
Vậy ...
1/ \(\frac{1}{2}x+1=\frac{2}{3}\)
\(\frac{1}{2}x=\frac{2}{3}-1\)
\(\frac{1}{2}x=-\frac{1}{3}\)
\(x=\left(-\frac{1}{3}\right)\div\frac{1}{2}\)
\(x=-\frac{2}{3}\)
2/ \(100+x=200+300\)
\(100+x=500\)
\(x=500-100\)
\(x=400\)
Chúc bạn học tốt nha!
Chúc bạn học tốt nha!
Chúc bạn học tốt nha!
Chúc bạn học tốt nha!
\(\frac{1}{2}x+1=\frac{2}{3}\Rightarrow\frac{1}{2}x=\frac{2}{3}-1=-\frac{1}{3}\Rightarrow x=-\frac{1}{3}:\frac{1}{2}=-\frac{2}{3}\)-2/3 vây..
\(100+x=200+300\\ x=500-100=100\) vậy...
Đặt \(\frac{1}{x}+x=a\)
Thì pt thành a2 - a - 14 = 0
Tới đây thì đơn giản rồi
\(\frac{200}{x}+\frac{100}{x-10}-\frac{300}{x}=\frac{1}{2}\left(ĐKXĐ:x\ne0;10\right)\)
\(\Leftrightarrow\frac{100}{x-10}-\frac{100}{x}=\frac{1}{2}\Leftrightarrow\frac{100.2x}{2x\left(x-10\right)}-\frac{100.2\left(x-10\right)}{2x\left(x-10\right)}=\frac{x\left(x-10\right)}{2x\left(x-10\right)}\)
\(\Leftrightarrow\frac{200x-100.2\left(x-10\right)}{2x\left(x-10\right)}=\frac{x\left(x-10\right)}{2x\left(x-10\right)}\Rightarrow200x-200x+2000=x\left(x-10\right)\)
\(x\left(x-10\right)=2000\). Xét nghiệm tính được \(x=50\left(tm\right)\)