Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=5\\x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=5\\u^2+v^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u+v=5\\\left(u+v\right)^2-2uv=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u+v=5\\uv=6\end{matrix}\right.\)
Theo Viet đảo, u và v là nghiệm của: \(t^2-5t+6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+\frac{1}{x}=3\\y+\frac{1}{y}=2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow...\)
Đặt \(x+\frac{1}{x}=a\)và\(y+\frac{1}{y}=b\)
ta cm được\(a+b=\left(x+y\right)\left(1+\frac{1}{xy}\right)\)
\(a^2+b^2+4=\left(x^2+y^2\right)\left(1+\frac{1}{x^2y^2}\right)\)
vậy hệ pt trở thành\(\hept{\begin{cases}a+b=5\\a^2+b^2+4=9\end{cases}}\)
từ đó tìm đc a và b rồi x và y
Đặt \(\hept{\begin{cases}x-\frac{9}{2}=a\\x-\frac{11}{4}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^4+b^4=1\\a=b-\frac{7}{4}\end{cases}}\)
\(\Rightarrow\left(b-\frac{7}{4}\right)^4+b^4-1=0\)
Giờ chứng minh nó vô nghiệm thôi
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
ĐKXĐ: ...
\(\Leftrightarrow\frac{2\left(x^2+1\right)}{\left(1-x^2\right)^2}+\frac{1}{4x^2}=\frac{\left(3x^2+1\right)^2}{144}\)
Đặt \(\left\{{}\begin{matrix}1-x^2=a\\4x^2=b\end{matrix}\right.\)
\(\Rightarrow\frac{2a+b}{a^2}+\frac{1}{b}=\frac{\left(a+b\right)^2}{144}\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{a^2b}=\frac{\left(a+b\right)^2}{144}\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\left(vn\right)\\a^2b=144\end{matrix}\right.\)
\(\Leftrightarrow\left(1-x^2\right)^2.4x^2=144\)
\(\Leftrightarrow\left(2x-2x^3\right)^2=12^2\)
\(\Leftrightarrow...\)
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+9}-\frac{1}{x+10}\)
\(=\frac{2}{x}-\frac{1}{x+10}=\frac{2\left(x+10\right)}{x\left(x+10\right)}-\frac{x}{x\left(x+10\right)}=\frac{2x+20-x}{x\left(x+10\right)}=\frac{x+20}{x^2+10x}\)
ĐKXĐ: x ≠ \(\pm\) 1
Từ phương trình ban đầu suy ra:
\(x^2\left(x+1\right)^2+x^2\left(x-1\right)^2=\frac{10}{9}.\left(x^2-1\right)^2\)
⇒ \(x^4+2x^3+x^2+x^4-2x^3+x^2=\frac{10}{9}\left(x^4-2x^2+1\right)\)
⇒ \(18\left(x^4+x^2\right)=10\left(x^4-2x^2+1\right)\)
⇒ \(4x^4+19x^2-5=0\Leftrightarrow\left(x^2+5\right)\left(4x^2-1\right)=0\)
⇔ \(x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)( thỏa mãn ĐKXĐ)
Vậy ...