Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t
các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm
Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)
Phương trình trở thành \(u+v+2uv=17\)
\(\Rightarrow u+v=\sqrt{17}\)
đến đây thì EZ rồi
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Do \(x=0\) không phải nghiệm
\(x^2+3x+1=0\Leftrightarrow x+3+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=-3\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Rightarrow x^2+\frac{1}{x^2}=7\)
Đặt \(x_n=x^n+\frac{1}{x^n}\Rightarrow x_1=-3;x_2=7\)
\(x_1x_n=\left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}}=x_{n+1}+x_{n-1}\)
\(\Rightarrow x_{n+1}=x_1x_n-x_{n-1}=-3x_n-x_{n-1}\)
Cho \(n=2\Rightarrow x_3=x^3+\frac{1}{x^3}=-3.x_2-x_1=-18\)
\(n=3\Rightarrow x_4=x^4+\frac{1}{x^4}=-3x_3-x_2=47\)
\(n=4\Rightarrow x_5=x^5+\frac{1}{x^5}=-3x_4-x_3=-123\)
\(n=5\Rightarrow x_6=x^6+\frac{1}{x^6}=-3x_5-x_4=322\)
Thay vào và tính, kết quả rất to
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi