\(\frac{200}{x}\)+ \(\frac{100}{x-10}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{200}{x}+\frac{100}{x-10}-\frac{300}{x}=\frac{1}{2}\left(ĐKXĐ:x\ne0;10\right)\)

\(\Leftrightarrow\frac{100}{x-10}-\frac{100}{x}=\frac{1}{2}\Leftrightarrow\frac{100.2x}{2x\left(x-10\right)}-\frac{100.2\left(x-10\right)}{2x\left(x-10\right)}=\frac{x\left(x-10\right)}{2x\left(x-10\right)}\)

\(\Leftrightarrow\frac{200x-100.2\left(x-10\right)}{2x\left(x-10\right)}=\frac{x\left(x-10\right)}{2x\left(x-10\right)}\Rightarrow200x-200x+2000=x\left(x-10\right)\)

\(x\left(x-10\right)=2000\). Xét nghiệm tính được  \(x=50\left(tm\right)\)

24 tháng 8 2020

Ta có : \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)

=> \(\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)

=> \(\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)

=> \(\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)

Vì \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

=> x - 357 = 0

=> x = 357

Vậy x = 357

24 tháng 8 2020

Pt <=> \(\left(\frac{x+14}{200}+1\right)+\left(\frac{x+27}{187}+1\right)+\left(\frac{x+105}{109}+1\right)=\left(\frac{x+200}{14}+1\right)+\left(\frac{x+187}{27}+1\right)+\left(\frac{x+109}{105}+1\right)\)<=> \(\frac{x+14+200}{200}+\frac{x+27+187}{187}+\frac{x+105+109}{109}=\frac{x+200+14}{14}+\frac{x+187+27}{27}+\frac{x+109+105}{105}\)<=> \(\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}=\frac{x+214}{14}+\frac{x+214}{27}+\frac{x+214}{105}\)

<=> \(\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\)

<=> \(\left(x+214\right)\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)=0\)

Vì \(\left(\frac{1}{200}+\frac{1}{187}+\frac{1}{109}-\frac{1}{14}-\frac{1}{27}-\frac{1}{105}\right)\ne0\)

<=> \(x+214=0\)

<=> \(x=-214\)

24 tháng 8 2020

Ta có: 

\(\frac{x+14}{200}+\frac{x+27}{187}+\frac{x+105}{109}=\frac{x+200}{14}+\frac{x+187}{27}+\frac{x+109}{105}\)

Cộng thêm mỗi phân thức 1 ta được:

\(\frac{x+214}{200}+\frac{x+214}{187}+\frac{x+214}{109}-\frac{x+214}{14}-\frac{x+214}{27}-\frac{x+214}{105}=0\)

\(\Leftrightarrow x+214=0\Rightarrow x=-214\)

19 tháng 4 2020
https://i.imgur.com/ELjb6a8.jpg
7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

28 tháng 3 2020

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)

=> ( x + 1)( x + 2) + ( x - 1)( x - 2) = 2x2 + 4

<=> x+ 2x + x + 2 + x2 - 2x - x + 2 = 2x+ 4 

<=>  x+ 2x + x +  x2 - 2x - x - 2x2 = 4 - 2 - 2

<=> 0x = 0

Vậy phương trình vô số nghiệm

18 tháng 1 2018

\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)

\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)

\(\Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)

Mà \(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\)

\(\Rightarrow123-x=0\Rightarrow x=123\)

Vậy Tập nghiệm của phương trình là \(S=\left\{123\right\}\)

18 tháng 1 2018

<=> 148-×/25 -1 + 169-x/23 -2 + 186-x/21 - 3 + 199-×/19 - 4=0  

<=>  (123-x)(1/25+1/23+1/21+1/19)=0

<=> x=123

Chúc bạn học tốt

Bài làm :

\(a,2x+1=x-4\)

\(\Rightarrow2x-x=-4-1\)

\(\Rightarrow x=-5\)

10 tháng 9 2020

a) 2x + 1 = x - 4

<=> 2x - x = -4 - 1

<=> x = -5

Vậy S = { -5 }

b) \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)( ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\))

<=> \(\frac{x+2}{x-2}=\frac{2}{x\left(x-2\right)}+\frac{1}{x}\)

<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

<=> \(\frac{x^2+2x}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

Khử mẫu

<=> \(x^2+2x=2+x-2\)

<=> \(x^2+2x-x=0\)

<=> \(x^2+x=0\)

<=> \(x\left(x+1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Đối chiếu với ĐKXĐ ta thấy x = -1 thỏa mãn

Vậy S = { -1 }

c) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

<=> \(\frac{x+1}{2}-\frac{2x}{2}\le\frac{1}{2}\)

Khử mẫu

<=> \(x+1-2x\le1\)

<=> \(-x+1\le1\)

<=> \(-x\le0\)

<=> \(x\ge0\)

Vậy nghiệm của bất phương trình là \(x\ge0\)

23 tháng 6 2020

a)

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\\ \Leftrightarrow\frac{201-x}{99}+\frac{99}{99}+\frac{203-x}{97}+\frac{97}{97}+\frac{205-x}{95}+\frac{95}{95}+4=4\\ \Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\) (*)

Do \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)\ne0\)

nên (*) \(\Leftrightarrow300-x=0\\ \Leftrightarrow x=300\)

b)

\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\\ \Leftrightarrow\frac{2-x}{2002}+\frac{2002}{2002}-1+1=\frac{1-x}{2003}+\frac{2003}{2003}-\frac{x}{2004}+\frac{2004}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}-\frac{2004-x}{2003}+\frac{2004-x}{2004}=0\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\) (*)

Do \(\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)

nên (*) \(\Leftrightarrow2004-x=0\)

\(\Leftrightarrow x=2004\)

c) \(\left|2x-3\right|=2x-3\) (1)

ĐKXĐ: \(\\ 2x-3\ge0\)

\(\Leftrightarrow x\ge\frac{3}{2}\)

\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-3=2x-3\\2x-3=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\forall x\in R\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\frac{3}{2}\right\}\)