Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ejjsjdjejdjejddjrjshdjsndndjkedkwkwmdmrmmsmdknwsndjjejdjdjrhdujrjddufjrjdsjjdjehddudhrhdhhhehrdhhehdhdhhheheyehehehdhdyryhehedhdhehehherhrhrhfhdhehdhurhedhdfudhrhdhhhd
\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=>\(\dfrac{x-342}{15}-1+\dfrac{x-323}{17}-2+\dfrac{x-300}{19}-3+\dfrac{x-273}{21}-4=0\)
<=>\(\dfrac{x-357}{15}+\dfrac{x-357}{17}+\dfrac{x-357}{19}+\dfrac{x-357}{21}=0\)
<=>\(\left(x-357\right)\left(\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}\right)=0\)
vì 1/15+1/17+1/19+1/21 khác 0=>x-357=0<=>x=357
vậy..................
chúc bạn học tốt ^^
\(2x^4+3x^3+8x^2+6x+5=0\)
\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)
\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)
Vậy tập nghiệm của pt là \(S=\varnothing\)
b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)
\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow x-357=0\Leftrightarrow x=357\)
Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)
\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
Mà \(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\)
\(\Rightarrow123-x=0\Rightarrow x=123\)
Vậy Tập nghiệm của phương trình là \(S=\left\{123\right\}\)
<=> 148-×/25 -1 + 169-x/23 -2 + 186-x/21 - 3 + 199-×/19 - 4=0
<=> (123-x)(1/25+1/23+1/21+1/19)=0
<=> x=123
Chúc bạn học tốt
Câu a)
\(2x^4+3x^3+8x^2+6x+5=0\)
\(\Leftrightarrow (2x^4+2x^3+2x^2)+(x^3+x^2+x)+5x^2+5x+5=0\)
\(\Leftrightarrow 2x^2(x^2+x+1)+x(x^2+x+1)+5(x^2+x+1)=0\)
\(\Leftrightarrow (x^2+x+1)(2x^2+x+5)=0\)
\(\Rightarrow \left[\begin{matrix} x^2+x+1=0\\ 2x^2+x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} (x+\frac{1}{2})^2+\frac{3}{4}=0\\ 2(x+\frac{1}{4})^2+\frac{39}{8}=0\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.
Cách khác:
PT \(\Leftrightarrow 4x^4+6x^3+16x^2+12x+10=0\)
\(\Leftrightarrow 3x^4+(x^4+6x^3+9x^2)+7x^2+12x+10=0\)
\(\Leftrightarrow 3x^4+(x^2+3x)^2+(4x^2+12x+9)+3x^2+1=0\)
\(\Leftrightarrow 3x^4+(x^2+3x)^2+(2x+3)^2+3x^2=-1\)
(vô lý vì vế phải âm còn vế trái không âm)
Vậy pt vô nghiệm.
Câu b:
\(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
\(\Leftrightarrow \frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}-10=0\)
\(\Leftrightarrow \frac{x-342}{15}-1+\frac{x-323}{17}-2+\frac{x-300}{19}-3+\frac{x-273}{21}-4=0\)
\(\Leftrightarrow \frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
\(\Leftrightarrow (x-357)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
Dễ thấy \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\neq 0\), do đó $x-357=0$ hay $x=357$ là nghiệm duy nhất của pt.
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
Mình làm thì nhớ k nghe:
ta có :\(\frac{137-x}{17}-1+\frac{150-x}{15}-2+\frac{159-x}{13}-3+\frac{164-x}{9}-4=0\)
\(\Leftrightarrow\frac{120-x}{17}+\frac{120-x}{15}+\frac{120-x}{13}+\frac{120-x}{9}=0\)
\(\Leftrightarrow120-x\times\left(\frac{1}{17}+\frac{1}{15}+\frac{1}{13}+\frac{1}{9}\right)=0\)
\(\Rightarrow120-x=0\Rightarrow x=120\)
nhớ k cho mình nghe
Ta có : \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
=> \(\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)
=> \(\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
=> \(\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
Vì \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)
=> x - 357 = 0
=> x = 357
Vậy x = 357