Tìm ĐKXĐ của A=x^2 -8x +16/x^2 -16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-8x+16}=\sqrt{x^2-2.4x+4^2}=\sqrt{\left(x-4\right)^2}=\left|x-4\right|\)
Vậy đkxđ là x ∈ R
Ta có \(\sqrt{x^2-8x+16}=\sqrt{x^2-2.x.4+4^2}=\sqrt{\left(x-4\right)^2}\)
Vì (x-4)2\(\ge0\) nên biểu thức \(\sqrt{x^2-8x+16}\) luôn xác định với mọi x\(\in R\)
Điều kiện xác định của biểu thức là:
\(2x+1>0\) được \(x>-\dfrac{1}{2}\)
\(x^2\le16\) được \(-4\le x\le4\)
\(x^2-8x+14\ge0\)
\(x^2-8x+14\ge0\Leftrightarrow\left(x-4\right)^2\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4\le-\sqrt{2}\\x-4\ge\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4+\sqrt{2}\end{matrix}\right.\)
Vậy đkxđ của biểu thức là:
\(-\dfrac{1}{2}< x\le4-\sqrt{2}\)
\(A=\dfrac{\left(x-4\right)\left(x+4\right)}{x}\cdot\dfrac{x}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)
Để A=2 thì 2x-8=x+4
=>x=12
Tử \(x^4+2x^3+8x+16\)
\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)
Mẫu \(x^4-2x^3+8x^2-8x+16\)
\(=x^4-2x^3+4x^2+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)
Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)
Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy Min=0 khi x=-2
\(A=\frac{x^2-8x+16}{x^2-16}\)
ĐKXĐ: \(x^2-16\ne0\Leftrightarrow\left(x-4\right)\left(x+4\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne4\\x\ne-4\end{cases}}\)
Vậy đkxđ là x khác 4 x khác -4