Tìm tất cả các giá trị của x để P= 2AB+\(\sqrt{x}\)đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\cdot\sqrt{\sqrt{x}\cdot\dfrac{2}{\sqrt{x}}}=2\sqrt{2}\)
Dấu '=' xảy ra khi \(\sqrt{x}\cdot\sqrt{x}=2\)
hay \(x=2\)
Lời giải:
ĐKXĐ: $x>0$
Có: $C=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$ theo BĐT AM-GM
Vậy $C_{\min}=2\sqrt{2}$. Giá trị này đạt tại $\sqrt{x}=\frac{2}{\sqrt{x}}$
$\Leftrightarrow x=2$
\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )
\(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}+1\ge1;\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+1}\le\dfrac{2}{1}=2\)
\(\Rightarrow C\ge1-2=-1\)
Vậy \(Min_C=-1\) khi \(x=0\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
\(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=\frac{\sqrt{x}-1+4}{\sqrt{x}-1}=1+\frac{4}{\sqrt{x}-1}\)
Để P đạt giá trị nguyên thì \(\frac{4}{\sqrt{x}-1}\) đạt giá trị nguyên
<=>4 chia hết cho \(\sqrt{x}-1\)
<=>\(\sqrt{x}-1\inƯ\left(4\right)\)
<=>\(\sqrt{x}-1\in\left\{-4;-2;-1;1;2;4\right\}\)
<=>\(\sqrt{x}\in\left\{-3;-1;0;2;3;5\right\}\)
<=>\(x\in\left\{0;4;9;25\right\}\)
Cách giải lớp 6 á, thông cảm :)
rút gọn A= ( \(\left(\sqrt{26}+5\sqrt{2}\right)\sqrt{19-5\sqrt{13}}\)
Cách 1: Ta nhận thấy với mọi \(x>0\) thì \(3\sqrt{x}+2>2\sqrt{x}+2\), do đó \(B>1\). Với \(x=0\) thì \(B=1\). Do đó \(min_B=1\Leftrightarrow x=0\)
Cách 1 tuy nhanh gọn nhưng nó chỉ có tác dụng trong một số ít các trường hợp. Trường hợp này may mắn cho ta ở chỗ ta có thể đánh giá tử lớn hơn hoặc bằng mẫu với mọi \(x\ge0\) (dấu "=" chỉ xảy ra khi \(x=0\))
Cách 2: \(B=\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\)
\(\Leftrightarrow2B\sqrt{x}+2B=3\sqrt{x}+2\)
\(\Leftrightarrow\left(2B-3\right)\sqrt{x}=2-2B\)
\(\Leftrightarrow\sqrt{x}=\dfrac{2-2B}{2B-3}\)
Vì \(\sqrt{x}\ge0\) nên \(\dfrac{2-2B}{2B-3}\ge0\)
\(\Leftrightarrow1\le B< \dfrac{3}{2}\). Như vậy \(min_B=1\Leftrightarrow x=0\)
Rõ ràng cách 2 dài hơn cách 1 nhưng nó có thể áp dụng trong nhiều dạng bài tìm GTNN hay GTLN khác nhau. Bạn xem xét bài toán rồi chọn cách làm cho phù hợp là được.
B = \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\) = \(\dfrac{3\sqrt{x}+3-1}{2\sqrt{x}+2}\) = \(\dfrac{3\left(\sqrt{x}+1\right)-1}{2\left(\sqrt{x}+1\right)}\) = \(\dfrac{3}{2}\) - \(\dfrac{1}{2\left(\sqrt{x}+1\right)}\)
Vì \(\dfrac{1}{2\sqrt{x}+2}\) > 0 ∀ \(x\) ≥ 0 ⇒ B min ⇔A = \(\dfrac{1}{2\sqrt{x}+2}\) max
2\(\sqrt{x}\) ≥ 0 ⇒ 2\(\sqrt{x}\) + 2 ≥ 2 ⇒ Max A = \(\dfrac{1}{2}\) ⇔ \(x\) = 0
Vậy Min B = \(\dfrac{3}{2}\) - \(\dfrac{1}{2}\) = 1 ⇔ \(x\) = 0