x - 1 + x^n+3 - x^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\)
\(=\left(x^3-x\right)-\left(x^3+x^2-x-1\right)\)
\(=x^3-x-x^3-x^2+x+1\)
\(=1-x^2\)
b) \(\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\)
\(=\left(x^2-x+2\right)-\left(2x^2+3x-2\right)+\left(2x^2-2x\right)\)
\(=x^2-x+2-2x^3-3x+2+2x^3+2x\)
\(=x^2-2x+4\)
\(=\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)
c) \(\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\)
\(=\left(x^3+4x^2+3x-2\right)-\left(2x^2-x-1\right)\)
\(=x^3+4x^2+3x-2-2x^3+x+1\)
\(=-x^3+4x^2+4x-1\)
Bài 1
\(a)x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\\ =\left(x+1\right)\left[x\left(x-1\right)-\left(x^2-1\right)\right]\\ =\left(1+x\right)\left(x^2-x-x^2+1\right)\\ =\left(1+x\right)\left(1-x\right)\\ =1-x^2\)
\(b)\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\\ =x^2-2x+x-2-\left(2x^2+4x-x-2\right)+2x^2-2x\\ =x^2-2x+x-2-(2x^2+3x-2)+2x^2-2x\\ =x^2-2x+x-2-2x^2-3x+2+2x^2-2x\\ =x^2-6x\)
\(c)\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2+x-2x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2-x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-2x^2+x+1\\ =x^3+2x^2+4x-1\)
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
a: \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
=>6x-3+4x-12=16x-8-6x-7
=>10x-15=10x-15(luôn đúng)
b: =>(x+3)(4-x)-(x+3)2=0
=>(x+3)(4-x-x-3)=0
=>(x+3)(-2x+1)=0
=>x=-3 hoặc x=1/2
d: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
\(\Leftrightarrow x^3-1-\left(x-2\right)\left(x^2+x+1\right)+2x^2-5=4x-4\)
\(\Leftrightarrow x^3-1-\left(x-1-1\right)\left(x^2+x+1\right)+2x^2-4x-1=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-\left[x^3-1-\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-x^3+1+x^2+x+1=0\)
\(\Leftrightarrow3x^2-3x=0\)
=>3x(x-1)=0
=>x=1(loại) hoặc x=0(nhận)
-Từ số 4! đến số 10! đều chia hết cho 20 do có thừa số 4.5=20.
-Mà 1!+2!+3!=1+2+6=91!+2!+3!=1+2+6=9 chia 20 dư 9 nên tổng đó chia 20 dư 9.
-Bạn ạ bạn tham khảo từ bài của mình thì ghi tham khảo nhé!
\(x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(=x-x^{n-2}-x+x^{n-2}\)
\(=0\)
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
a) 4x (1,5x - 2) - 3x (2x - 3) - x + 5
= 6x2 - 8x - 6x2 + 9x - x + 5
= 5
b) (2x - 3) (4x + 1) - 4 (x - 1) (2x - 1) - 2x + 5
= 8x2 + 2x - 12x - 3 - 4 (2x2 - x - 2x + 1) - 2x + 5
= 8x2 - 12x + 2 - 8x2 + 4x + 8x - 4
= -2
c) Ở đây mình không biết bạn viết như thế nào (\(x-\frac{1}{2}\)hay\(\frac{x-1}{2}\)) nhưng mình nghĩ chắc là \(x-\frac{1}{2}\). Thôi mình thử cả hai cho chắc
C1: (x - 3) (x + 2) + (x - 1) (x + 1) - [x - 1 / 2][x - 1 / 2] - x2
= x2 + 2x - 3x - 6 + (x2 - 1) - [x - 1 / 2]2 - x2
= - x - 6 + x2 - 1 - (x2 - x + 1/4)
= x2 - x - 7 - x2 + x - 1/4
= - 29/4
Thôi cách này đúng rồi mình không làm cách kia nha
Câu d) mình chưa hiểu (xn + 1 hay xn+1) nên mình không làm câu này