Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
b:
ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)
\(\left(\dfrac{4}{x^3-4x}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x^2+2x}-\dfrac{x}{2x+4}\right)\)
\(=\left(\dfrac{4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{x\left(x+2\right)}-\dfrac{x}{2\left(x+2\right)}\right)\)
\(=\dfrac{4+x\left(x-2\right)}{x\left(x-2\right)\cdot\left(x+2\right)}:\dfrac{2\left(x-2\right)-x^2}{x\left(x+2\right)\cdot2}\)
\(=\dfrac{x^2-2x+4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2x\left(x+2\right)}{-\left(x^2-2x+4\right)}\)
\(=\dfrac{-2}{x-2}\)
c:ĐKXĐ: x<>0
\(\left(x-\dfrac{3}{x}\right):\left(\dfrac{x^2+2x+1}{x}-\dfrac{2x+4}{x}\right)\)
\(=\dfrac{x^2-3}{x}:\dfrac{x^2+2x+1-2x-4}{x}\)
\(=\dfrac{x^2-3}{x}\cdot\dfrac{x}{x^2-3}\)
=1
a)\(\frac{3y}{4x}+\frac{5y}{4x}=\frac{3y+5y}{4x}=\frac{8y}{4x}=\frac{2y}{x}\)
b)\(\frac{x^2+1}{2x-4}-\frac{7x}{2-x}=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x}{x-2}\)
\(=\frac{x^2+1}{2\left(x-2\right)}-\frac{-7x\times2}{\left(x-2\right)\times2}=\frac{x^2+1+14x}{2\left(x-2\right)}\)
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
\(P\left(x\right)=-2x^4-7x+\dfrac{1}{2}-6x^4+2x^2-x\)
\(P\left(x\right)=\left(-2x^4-6x^4\right)-\left(7x+x\right)+2x^2+\dfrac{1}{2}\)
\(P\left(x\right)=-8x^4-8x+2x^2+\dfrac{1}{2}\)
______
\(Q\left(x\right)=3x^3-x^4-5x^2+x^3-6x+\dfrac{3}{4}\)
\(Q\left(x\right)=\left(3x^3+x^3\right)-x^4-5x^2-6x+\dfrac{3}{4}\)
\(Q\left(x\right)=4x^3-x^4-5x^2-6x+\dfrac{3}{4}\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
a: \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
=>6x-3+4x-12=16x-8-6x-7
=>10x-15=10x-15(luôn đúng)
b: =>(x+3)(4-x)-(x+3)2=0
=>(x+3)(4-x-x-3)=0
=>(x+3)(-2x+1)=0
=>x=-3 hoặc x=1/2
d: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)
\(\Leftrightarrow x^3-1-\left(x-2\right)\left(x^2+x+1\right)+2x^2-5=4x-4\)
\(\Leftrightarrow x^3-1-\left(x-1-1\right)\left(x^2+x+1\right)+2x^2-4x-1=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-\left[x^3-1-\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow x^3+2x^2-4x-2-x^3+1+x^2+x+1=0\)
\(\Leftrightarrow3x^2-3x=0\)
=>3x(x-1)=0
=>x=1(loại) hoặc x=0(nhận)