Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(x^4-4x^2-4x-1\)
\(=x^4-\left(4x^2+4x+1\right)\)
\(=x^4-\left(2x+1\right)^2\)
\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)
b) \(x^2+2x-15\)
\(=x^2+2x+1-16\)
\(=\left(x+1\right)^2-4^2\)
\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)
c) \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
B2:
a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)
\(=2x^2-4x+2-4x^2+9\)
\(=-2x^2-4x+11\)
b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(x+3-x+3\right)^2=6^2=36\)
c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)
\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)
\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)
\(=6x^2+88x-57\)
1/
\(B=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{\left(3^8-1\right)\left(3^8+1\right)-3^{16}}{4}\)
\(=\frac{3^{16}-1-3^{16}}{4}=\frac{-1}{4}\)
2/
a, (x-5)2-(x+3)2=1
<=>(x-5+x+3)(x-5-x-3)=1
<=>-16.(x-1)=1
<=>x-1=-1/16
<=>x=15/16
b, (2x-1)2-(2x-3)2=4
<=>(2x-1+2x-3)(2x-1-2x+3)=4
<=>-8(x-1)=4
<=>x-1=-1/2
<=>x=1/2
mk lm tp nè
b)(x+1)\(^2\)+(x+3)(x-3)=(x+1)\(^2\)-(x+3)(x+3)
=(x+1)\(^2\)-(x+3)\(^2\)
=(x+1+x+3)(x+1-x+3)
=(2x+4)4
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
Bài 1 :
a) \(x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\)
\(=\left(x^3-x\right)-\left(x^3+x^2-x-1\right)\)
\(=x^3-x-x^3-x^2+x+1\)
\(=1-x^2\)
b) \(\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\)
\(=\left(x^2-x+2\right)-\left(2x^2+3x-2\right)+\left(2x^2-2x\right)\)
\(=x^2-x+2-2x^3-3x+2+2x^3+2x\)
\(=x^2-2x+4\)
\(=\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{15}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)
c) \(\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\)
\(=\left(x^3+4x^2+3x-2\right)-\left(2x^2-x-1\right)\)
\(=x^3+4x^2+3x-2-2x^3+x+1\)
\(=-x^3+4x^2+4x-1\)
Bài 1
\(a)x\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x+1\right)\\ =\left(x+1\right)\left[x\left(x-1\right)-\left(x^2-1\right)\right]\\ =\left(1+x\right)\left(x^2-x-x^2+1\right)\\ =\left(1+x\right)\left(1-x\right)\\ =1-x^2\)
\(b)\left(x+1\right)\left(x-2\right)-\left(2x-1\right)\left(x+2\right)+2x\left(x-1\right)\\ =x^2-2x+x-2-\left(2x^2+4x-x-2\right)+2x^2-2x\\ =x^2-2x+x-2-(2x^2+3x-2)+2x^2-2x\\ =x^2-2x+x-2-2x^2-3x+2+2x^2-2x\\ =x^2-6x\)
\(c)\left(x^2+2x-1\right)\left(x+2\right)-\left(x-1\right)\left(2x+1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2+x-2x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-\left(2x^2-x-1\right)\\ =x^3+2x^2+2x^2+4x-x-2-2x^2+x+1\\ =x^3+2x^2+4x-1\)