Cho đa thức P(x)=6x4-7x3+ax2+3x+2 và
Q (x)= x2-x+b. Tìm a, b ssao cho P (x) chai hết cho Q (x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)P(x)=5x^3-3x+7-x`
`=5x^3-3x-x+7`
`=5x^3-4x+7`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`=-5x^3-x^2+2x+2x-3-2`
`=-5^3-x^2+4x-5`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`=5x^3-5x^3-x^2-4x+4x+7-5`
`=-x^2+2`
`N(x)=5x^3-4x+7+5x^3+x^2-4x+5`
`=5x^3+5x^3+x^2-4x-4x+7+5`
`=10x^3+x^2-8x+12`
Đặt `M(x)=0`
`<=>-x^2+2=0`
`<=>2=x^2`
`<=>x=+-sqrt2`
a, Ta có : \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=5x^3+2x-3+2x-x^2-2=5x^3-x^2+4x-5\)
b, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(5x^3-4x+7+5x^3-x^2+4x-5=10x^3-x^2+2\)
Ta có ; \(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(5x^3-4x+7-5x^3+x^2-4x+5=x^2-8x+12\)
c, phải là tìm nghiệm N(x) chứ ?
Ta thấy \(B=\left(x-1\right)\left(x-5\right)\) nên để đa thức A chia hết cho đa thức B thì \(A=\left(x-1\right)\left(x-5\right).C\) với \(C\) là một đa thức bậc 2 hệ số nguyên theo \(x\).
Điều này tương đương với việc \(A\) có 2 nghiệm là \(x=1,x=5\). Do đó \(A\left(1\right)=0\) \(\Leftrightarrow1^4-7.1^3+10.1^2+\left(a-1\right)+b-a=0\) \(\Leftrightarrow b=-3\)
Ta viết lại \(A=x^4-7x^3+10x^2+\left(a-1\right)x-3-a\). Ta có \(A\left(5\right)=0\) \(\Leftrightarrow5^4-7.5^3+10.5^2+\left(a-1\right).5-3-a=0\) \(\Leftrightarrow4a-8=0\) \(\Leftrightarrow a=2\).
Vậy để đa thức A chia hết cho đa thức B thì \(a=2,b=-3\).
A:B=x2-x+11 dư (a+70)x+b-a-55
Để A chia hết cho B thì
(a+70)x+b-a-55=0
b-a-55=0 (a khác -70) tại x=0
Vậy b-a=55 thỏa đề bài
Lời giải:
$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$
$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$
a: M(x)=A(x)+B(x)
=4x^4-7x^3+6x^2-5x-6-4x^4+7x^3-5x^2+5x+4
=x^2-2
b: C(x)=A(x)-B(x)
=4x^4-7x^3+6x^2-5x-6+4x^4-7x^3+5x^2-5x-4
=8x^4-14x^3+11x^2-10x-10
c: M(1)=1^2-2=-1
C(1)=8-14+11-10-10=5-20=-15
`a,`
\(M\left(x\right)=A\left(x\right)+B\left(x\right)=\left(4x^4+6x^2-7x^3-5x-6\right)+\)`(-5x^2+7x^3+5x+4-4x^4)`
`M(x)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4`
`=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)`
`=x^2-2`
`b,`
`A(x)=B(x)+C(x)`
`-> C(x)=A(x)-B(x)`
`-> C(x)=(4x^4 + 6x^2 - 7x^3 - 5x - 6)-(-5x^2+7x^3+5x+4-4x^4)`
`C(x)=4x^4 + 6x^2 - 7x^3 - 5x - 6+5x^2-7x^3-5x-4+4x^4`
`= (4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)`
`= 8x^4-14x^3+11x^2-10x-10`
`c,`
`M(1)=1^2-2=1-2=-1`
`C(1)=8*1^4-14*1^3+11*1^2-10*1-10`
`=8-14+11-10-10=-6+11-10-10=5-10-10=-5-10=-15`
Chọn B
Ta có: B(x) = 6x4 - 7x3 + 6x2- 7x3 + 4x4 + 3 - 5x + 2x
= 10x4 - 14x3 + 6x2 - 3x + 3.