K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019
Bài làm

A B C x y O O 2 H

1/ Xét \(\diamond ACDO\), có :

\(\widehat{BAC}=\widehat{ACD}=\widehat{CDO}=90^0\)

\(\Rightarrow\diamond ACDO\) là hình chữ nhật

mà \(AC=CD\)

\(\Rightarrow\diamond ACDO\) là hình vuông.

2/ Ta có :

\(\bigtriangleup ABC\) vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^0\)

\(\bigtriangleup ABH\) vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{ABC}=90^0\)

Do đó \(\widehat{BAH}=\widehat{ACB}\)

Xét \(\bigtriangleup ABC\) và \(\bigtriangleup AOO_2\), có :

\(\widehat{BAC}=\widehat{O_2OA}=90^0\) (\(\diamond ACDO\) là hình vuông)

\(AC=AO\) (\(\diamond ACDO\) là hình vuông)

\(\widehat{OAO_2}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\))

\(\Rightarrow\bigtriangleup ABC=\bigtriangleup AOO_2\text{ }\left(g.c.g\right)\).

22 tháng 3 2020

\(\text{GIẢI :}\)

A B C H D O I x y

a) Xét \(\diamond\text{ACDO}\)\(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)

\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.

\(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.

b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)

Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)

hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)

Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).

Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :

\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)

\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)

\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\)\(\widehat{BAH}\) đối đỉnh)

\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)

\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).

8 tháng 4 2019

A B C x H D H 2 O y O 2

31 tháng 3 2019

Giải : 

A B C D H x E G

a/ Vì \(DH\perp BC\)

        \(Cx\perp BC\)

\(\Rightarrow DH//Cx\)

b/ Xét , có :

\(\widehat{HDE}=\widehat{CED}\text{ (hai góc so le trong của CE//DH)}\)

\(HD=EC\text{ (gt)}\)

\(\widehat{DHC}=\widehat{ECH}\left(=90^0\right)\)

\(\Rightarrow\Delta DHG=\Delta ECG\left(g.c.g\right)\).

c/ Vì \(\Delta DHG=\Delta ECG\left(c.m.t\right)\Rightarrow DG=GC\text{ (hai cạnh tương ứng)}\)

\(\Rightarrow\text{G là trung điểm của đoạn thẳng DE}\).

31 tháng 3 2019

Đề thi mà

24 tháng 4 2017

Cho tam giác ABC nhọn và đường cao AH,Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B,Kẻ tia Cx // AB,Trên tia Cx lấy điểm D sao cho CD = AB,Kẻ DK vuông góc BC,Gọi O là trung điểm của BC,Chứng minh AH = DK,Chứng minh ba điểm A O D thẳng hàng,Chứng minh AC // BD,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7