Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AB=AC nên tam giác ABC cân tại A=> góc B= góc ACB
Mà góc ACB= gốc ICE ( hai góc đối đỉnh) nên góc B= góc ICE
Xét tam giác BDH và tam giác CEI có:
góc BHD= góc CIE= 90 độ
BD=CE
góc B= góc ICE
=> tam giác BDH= tam giác CEI ( cạnh huyền- góc nhọn)
=> DH=EI
b) Vị gốc DHO= goc OIE ( hai góc so le trong) nền ĐH//IE
=> goc HDO= gốc OEI ( hai góc so le trong)
Xét tam giác HDO và tam giác IEO co:
goc DHO= goc EIO= 90 do
DH=EI
goc HDO= goc IEO
=> tam giac HDO= tam giac IEO ( g. c. g)
=> HO=IO
=> O la trung diem cua doan thang HI
a, Ta có : \(\Delta\)ABC cân tại A (gt)
\(\Rightarrow\)Góc B = góc \(C_1\)
Mà góc \(C_1=C_2\)(đối đỉnh)
\(\Rightarrow\)Góc B = góc \(C_2\)
Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :
BD=CE (gt)
Góc B = góc C\(_2\)(cmt)
\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)
\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)
Vậy...
b, Ta có : DH và EK cùng vuông góc vs BC (gt)
\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)
\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )
Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :
DH=CE (\(\Delta BEH=\Delta CEK\))
Góc HDI = góc IEC (cmt)
\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)
\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )
Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )
\(\Rightarrow\)I là trung điểm của BC
Vậy...
Chúc bn hok tốt
a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé
a: ta có: \(\widehat{KCE}=\widehat{ACB}\)(hai góc đối đỉnh)
\(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
Do đó: \(\widehat{KCE}=\widehat{ABC}\)
Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE
\(\widehat{DBH}=\widehat{ECK}\)
Do đó: ΔDHB=ΔEKC
=>BH=CK
Giải :
a/ Vì \(DH\perp BC\)
\(Cx\perp BC\)
\(\Rightarrow DH//Cx\)
b/ Xét , có :
\(\widehat{HDE}=\widehat{CED}\text{ (hai góc so le trong của CE//DH)}\)
\(HD=EC\text{ (gt)}\)
\(\widehat{DHC}=\widehat{ECH}\left(=90^0\right)\)
\(\Rightarrow\Delta DHG=\Delta ECG\left(g.c.g\right)\).
c/ Vì \(\Delta DHG=\Delta ECG\left(c.m.t\right)\Rightarrow DG=GC\text{ (hai cạnh tương ứng)}\)
\(\Rightarrow\text{G là trung điểm của đoạn thẳng DE}\).
Đề thi mà