K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

a: Xét (O) có

AM,AC là tiếp tuyến

Do đó: AM=AC và OA là tia phân giác của \(\widehat{MOC}\)

=>\(\widehat{MOC}=2\cdot\widehat{MOA}\)

Xét (O) có

BM,BD là tiếp tuyến

Do đó: BM=BD và OB là phân giác của \(\widehat{MOD}\)

=>\(\widehat{MOD}=2\cdot\widehat{MOB}\)

\(\widehat{MOC}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOA}+2\cdot\widehat{MOB}=180^0\)

=>\(2\left(\widehat{MOA}+\widehat{MOB}\right)=180^0\)

=>\(\widehat{MOA}+\widehat{MOB}=\dfrac{180^0}{2}=90^0\)

=>\(\widehat{AOB}=90^0\)

b: AB=AM+BM

mà AM=AC và BM=BD

nên AB=AC+BD

c: Xét ΔOAB vuông tại O có OM là đường cao

nên \(AM\cdot MB=OM^2\)

=>\(AC\cdot BD=R^2\) không đổi khi M di chuyển trên (O)

12 tháng 12 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

Xét tứ giác CPEO có:

∠(PCO) = ∠(PEO) =  90 0 (gt)

⇒ ∠(PCO) + ∠(PEO) =  180 0

⇒ Tứ giác CPEO là tứ giác nội tiếp

Xét tứ giác OEQD có:

∠(OEQ) = ∠(ODQ) = 90 0  (gt)

⇒ ∠(OEQ) + ∠(ODQ) =  180 0

⇒ Tứ giác OEQD là tứ giác nội tiếp

26 tháng 11 2022

Làm cho mik ý b và c

16 tháng 7 2016

Giải nhanh hộ mình

10 tháng 5 2022

A B C D H E O

a/ Nối A với D ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)

=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp

b/ 

Xét tg vuông ACO có

\(\widehat{ACO}+\widehat{AOC}=90^o\)

Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)

Xét tứ giác nội tiếp AHDC có

 \(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)

\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)

Xét tam giác EOH và tg EBD có

\(\widehat{BED}\) chung

\(\widehat{AOC}=\widehat{EDB}\)

=> tg EOH đồng dạng với tg EDB (g.g.g)

\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)

 

 

 

10 tháng 5 2022

a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)

Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC

\(\Rightarrow AHDC\) là tứ giác nội tiếp

b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)

Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta EOH\) và \(\Delta EDB\) có:

\(\widehat{BED}\) chung

\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)

\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)