Tìm tất cả các giá trị của tham số m\(\left(m\in R\right)\) để phương trình: \(x^4-\left(3m+1\right)x^2+6m-2=0\) có 4 nghiệm phân biệt đều lớn hơn -4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:
$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.
Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)
Khi đó, 4 nghiệm phân biệt là:
$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$
Hiển nhiên $x_1, x_3>-4$
Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$
$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$
$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:
\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)
\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)
Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)
Δ=(2m-1)^2-4(2m-2)
=4m^2-4m+1-8m+8=(2m-3)^2
Để pt có 2 nghiệm pb thì 2m-3<>0
=>m<>3/2
x1^4+x2^4=17
=>(x1^2+x2^2)^2-2(x1x2)^2=17
=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17
=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17
=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17
Đặt 4m^2-8m+4=a
Ta sẽ có (a+1)^2-2a-17=0
=>a^2-16=0
=>a=4 hoặc a=-4(loại)
=>4m^2-8m=0
=>m=0 hoặc m=2
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m
Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)
\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)
\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )
\(đặt:x^2=t\ge0\)
\(\Rightarrow pt\Leftrightarrow m.t^2-2\left(m-1\right)t+\left(m-1\right)m=0\left(1\right)\)
\(với:m=0\Rightarrow\left(1\right)\Leftrightarrow-2\left(0-1\right)t=0\Leftrightarrow t=0\Rightarrow x=0\left(tm\right)\)
\(với:m\ne0\) pt đã cho có một nghiệm khi (1) có nghiệm duy nhất bằng 0 hoặc (1) có 1 nghiệm bằng 0 nghiệm còn lại âm
\(\Rightarrow\left[{}\begin{matrix}t=-\dfrac{b}{2a}=\dfrac{2\left(m-1\right)}{m}=0\Leftrightarrow m=1\left(tm\right)\\t1=0=>\left(1\right)\Leftrightarrow\left(m-1\right)m=0\Rightarrow m=0\left(ktm\right);m=1\left(tm\right)\end{matrix}\right.\)
từ 2TH trên \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt đã cho có 1 nghiệm
\(\Leftrightarrow x^4-4-\left(3m+1\right)x^2+2\left(3m+1\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)-\left(3m+1\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2-3m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2=3m-1\end{matrix}\right.\)
Để pt có 4 nghiệm pb đều lớn hơn -4
\(\Leftrightarrow\left\{{}\begin{matrix}3m-1\ne2\\0< 3m-1< 16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\frac{1}{3}< m< \frac{17}{3}\end{matrix}\right.\)