Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b.
\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)
Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)
Thế vào bài toán:
\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)
\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)
\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)
\(\Leftrightarrow m^2+2m+1\le0\)
\(\Leftrightarrow\left(m+1\right)^2\le0\)
\(\Rightarrow m=-1\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2-\left(-x\right)-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)
Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)
\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)
\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)
TH1: \(m\ge3\)
PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)
\(\Leftrightarrow2m^2+6m-12=0\)
Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\)
\(\Rightarrow2m^2+6m-12>0\)
=>Pt vô nghiệm
TH2: \(m< 3\)
PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)
\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)
\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)
Vậy...
b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))
b2: ➝x1+x2 =-2m-1 (1)
→ x1.x2=m^2-1 (2)
b3: biến đổi : (x1-x2)^2 = x1-5x2
↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0
↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0
↔x2= -m-1
B4: thay x2= -m-1 vào (1) → x1 = -m
Thay x2 = -m-1, x1 = -m vào (2)
→m= -1
B5: thử lại:
Với m= -1 có pt: x^2 -x =0
Có 2 nghiệm x1=1 và x2=0 (thoả mãn)
a, - Xét phương trình (1) có : \(\Delta^,=b^{,2}-ac\)
\(=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5\)
\(=m^2-4m+6=m^2-4m+4+2=\left(m-2\right)^2+2\)
- Thấy \(\Delta^,\ge2>0\) => ĐPCM .
b,Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(TH_1:x_1=0\Rightarrow m=\dfrac{5}{2}\)
- Thay m và x1 vào một PT ta được : x2 = -3 ( L )
=> Không tồn tại x1 = 0 để nghiệm còn lại lớn hơn 0 .
\(TH_2:x_1< 0< x_2\)
\(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
Vậy ...
\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)
Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)
suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).
Ta có: \(x_1=m-1\), \(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).
Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).
\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).
Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).
\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)
Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.
Mình chỉnh sửa lại một chút nhé.
\(A=1-\dfrac{24}{m^2+2}\)
\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)
Vậy...
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Δ=(2m-1)^2-4(2m-2)
=4m^2-4m+1-8m+8=(2m-3)^2
Để pt có 2 nghiệm pb thì 2m-3<>0
=>m<>3/2
x1^4+x2^4=17
=>(x1^2+x2^2)^2-2(x1x2)^2=17
=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17
=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17
=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17
Đặt 4m^2-8m+4=a
Ta sẽ có (a+1)^2-2a-17=0
=>a^2-16=0
=>a=4 hoặc a=-4(loại)
=>4m^2-8m=0
=>m=0 hoặc m=2