\(x^4-\left(3m+1\right)x^2+6m-2=0\) có 4 nghiệm pb lớn hơn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:

$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.

Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)

Khi đó, 4 nghiệm phân biệt là:

$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$

Hiển nhiên $x_1, x_3>-4$ 

Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$

$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$

$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:

\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)

\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)

Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)

 

NV
9 tháng 11 2019

\(\Leftrightarrow x^4-4-\left(3m+1\right)x^2+2\left(3m+1\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)-\left(3m+1\right)\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2-3m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2=3m-1\end{matrix}\right.\)

Để pt có 4 nghiệm pb đều lớn hơn -4

\(\Leftrightarrow\left\{{}\begin{matrix}3m-1\ne2\\0< 3m-1< 16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\frac{1}{3}< m< \frac{17}{3}\end{matrix}\right.\)

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

a) Đặt \(x^3=a\) thì pt trở thành:

\(a^2+2003a-2005=0\)

\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)

\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)

b)

Đặt \(x^2=a(a\geq 0)\)

PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)

\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)

Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:

\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)

Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Câu 2:

Đặt \(x^2=a\). PT ban đầu trở thành:

\(a^2+a+m=0(*)\)

\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$

Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)

Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)

Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.

\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt

Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.

Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.