K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 11 2019

\(\Leftrightarrow x^4-4-\left(3m+1\right)x^2+2\left(3m+1\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)-\left(3m+1\right)\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2-3m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2=3m-1\end{matrix}\right.\)

Để pt có 4 nghiệm pb đều lớn hơn -4

\(\Leftrightarrow\left\{{}\begin{matrix}3m-1\ne2\\0< 3m-1< 16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\frac{1}{3}< m< \frac{17}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:

$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.

Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)

Khi đó, 4 nghiệm phân biệt là:

$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$

Hiển nhiên $x_1, x_3>-4$ 

Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$

$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$

$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:

\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)

\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)

Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)

 

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

1 tháng 1 2022

\(đặt:x^2=t\ge0\)

\(\Rightarrow pt\Leftrightarrow m.t^2-2\left(m-1\right)t+\left(m-1\right)m=0\left(1\right)\)

\(với:m=0\Rightarrow\left(1\right)\Leftrightarrow-2\left(0-1\right)t=0\Leftrightarrow t=0\Rightarrow x=0\left(tm\right)\)

\(với:m\ne0\) pt đã cho có một nghiệm khi (1) có nghiệm duy nhất bằng 0 hoặc (1) có 1 nghiệm bằng 0 nghiệm còn lại âm

\(\Rightarrow\left[{}\begin{matrix}t=-\dfrac{b}{2a}=\dfrac{2\left(m-1\right)}{m}=0\Leftrightarrow m=1\left(tm\right)\\t1=0=>\left(1\right)\Leftrightarrow\left(m-1\right)m=0\Rightarrow m=0\left(ktm\right);m=1\left(tm\right)\end{matrix}\right.\)

từ 2TH trên \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt đã cho có 1 nghiệm

 

 

 

 

NV
20 tháng 1 2022

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)