Cho ∆ABC trên tia đối của tia AB lấy điểm D sao cho AD= AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC.
a) chứng minh ∆ABC =∆ADE
b) chứng minh BC//DE
CẢM ƠN CÁC BẠN.MK ĐANG GẤP.😢😢😢😢😢😢
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài tương tự mà mình làm đây nhé:
Bài 1:
Bạn thay điểm E thành điểm F và điểm K thành điểm E nhé.
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường trung trực của tam giác ABD.
=> AM là đường trung trực của đoạn thẳng BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAE = DAE.
Xét tam giác ABE và tam giác ADE có:
AB = AD (gt)
BAE = DAE (cmt)
AE là cạnh chung
=> Tam giác ABE = Tam giác ADE (c . g . c)
=> ABE = ADE (2 góc tương ứng).
=> BE = DE (2 cạnh tương ứng).
Ta có:
ABE + EBF = 1800 (vì 2 góc kề bù)
ADE + EDC = 1800 (vì 2 góc kề bù)
Mà ABE = ADE (cmt)
=> EBF = EDC.
Xét tam giác EBF và tam giác EDC có:
EB = ED (cmt)
EBF = EDC (cmt)
BF = DC (gt)
=> Tam giác EBF = Tam giác EDC (c . g . c)
=> BEF = DEC (2 góc tương ứng)
Lại có: BED + DEC = 180 (2 góc kề bù)
Mà BEF = DEC (cmt).
=> BED + BEF = 1800
Mà BED + BEF = FED.
=> FED = 1800
=> E, F, D thẳng hàng (đpcm).
Chúc bạn học tốt!
Bài 1:
Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(ABD\) và \(ACD\) có:
\(AB=AC\left(gt\right)\)
\(BD=CD\) (vì D là trung điểm của \(BC\))
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\left(c-c-c\right)\)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng).
=> \(AD\) là tia phân giác của \(\widehat{BAC}.\)
b) Vì \(\widehat{BAD}=\widehat{CAD}\left(cmt\right)\)
=> \(\widehat{MAD}=\widehat{NAD}.\)
Xét 2 \(\Delta\) \(AMD\) và \(AND\) có:
\(AM=AN\left(gt\right)\)
\(\widehat{MAD}=\widehat{NAD}\left(cmt\right)\)
Cạnh AD chung
=> \(\Delta AMD=\Delta AND\left(c-g-c\right)\)
=> \(\widehat{AMD}=\widehat{AND}\) (2 góc tương ứng).
Mà \(\widehat{AMD}=90^0\left(gt\right)\)
=> \(\widehat{AND}=90^0.\)
=> \(DN\perp AN\)
Hay \(DN\perp AC.\)
Chúc bạn học tốt!
+ Trên tia Ox có , OA<OB(2cm<8cm)
=>A nằm giữa O và B
=>OA+AB=OB
+ Thay số:OA=2cm, OB=8cm
2+AB=8
AB=8-2
AB=6(cm)
+ Vậy AB = 6cm
b Trên tia BA có CB<AB(2cm <6cm)
=>C nằm giữa A và B
=>AC +CB=AB
Thay số: CB= 2cm, AB=6cm
AC+2=6
AC = 6-2
AC = 4(cm)
Vậy AC= 4cm
c Vì M là trung điểm của AC
=>AM=2cm
Trên tia Ox có AM<AC (2cm<4cm)
=>M nằm giữa A và C
=> AM +MC = AC
Thay số AM = 2cm , AC = 4cm
2+ MC = 4
MC = 4-2
MC = 2 (cm)
Vậy MC = 2cm
=> MC = 2cm , CB=2cm
Vì MC = CB(2cm = 2cm)
C cách đều 2 đầu mút
=> C là trung điểm của MB
a, theo bài ra có: \(\left\{{}\begin{matrix}AB=AD\\DE=BC\end{matrix}\right.\)
có \(\angle\left(BAC\right)=\angle\left(DAE\right)=90^o\)(đối đỉnh)
\(=>\Delta ABC=\Delta ADE\left(ch.cgv\right)\)
b, có:\(\angle\left(BAC\right)+\angle\left(CAE\right)=180^0\)(kề bù)
\(=>\angle\left(CAE\right)=90^0\)\(=>\Delta CAE\) vuông tại A(1)
do \(\Delta ABC=\Delta ADE\left(cmt\right)\)\(=>AC=AE\left(2\right)\)
từ(1)(2)\(=>\Delta CAE\) vuông cân tại A=>\(\angle\left(AEC\right)=\angle\left(ACE\right)=\dfrac{\angle\left(CAE\right)}{2}=\dfrac{90^0}{2}=45^o\)
a)
Sửa đề: ΔABM=ΔADN
Xét ΔAED và ΔACB có
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)
AD=AB(gt)
Do đó: ΔAED=ΔACB(c-g-c)
⇒\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)
hay \(\widehat{ADN}=\widehat{ABM}\)
Xét ΔADN và ΔABM có
DN=BM(gt)
\(\widehat{ADN}=\widehat{ABM}\)(cmt)
AD=AB(gt)
Do đó: ΔADN=ΔABM(c-g-c)
b) Ta có: ΔADN=ΔABM(cmt)
nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)
mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)
nên \(\widehat{DAN}+\widehat{DAM}=180^0\)
\(\Leftrightarrow\widehat{NAM}=180^0\)
hay M,A,N thẳng hàng(đpcm)
Sao câu này mình trả lời rồi mà không được nhỉ?
Bạn đừng để ý đến điểm I và J nhé.
a) Xét 2 \(\Delta\) \(ABC\) và \(ADE\) có:
\(AB=AD\left(gt\right)\)
\(AC=AE\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (vì 2 góc đối đỉnh)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABC=\Delta ADE.\)
=> \(\widehat{ABC}=\widehat{ADE}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(BC\) // \(DE\left(đpcm\right).\)
Chúc bạn học tốt!