Cho tam giac ABC, trung tuyen BM va CN. Biet AB<AC. CM BM<CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác abc cân tại a và 2 đường trung tuyến bm, cn cắt nhau tại K
a) chứng minh: tam giác bnc = tam giác cmb
b) chứng minh tam giác bkc cân tại K
c) chứng minh BC< 4km
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔBNC=ΔCMB
b: Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)
nên ΔKBC cân tại K
cho tam giac abc can tai a va 2 duong trung tuyen bm,cn cat nhau tai k
a) Cm:tam giac bnc=tam giac cmb
b)Cm:tam giac bkc can tai k
c)Cm:bc<4km
ta có tg ABC cân ở A => AB=AC (t/c)
mà BM,CN là đường Trung tuyến
=> AN=NB , AM = MC
khi đó : BN = \(\dfrac{1}{2}\)AB và MC=\(\dfrac{1}{2}AC\)
=> BN=MC
xét ΔBNC và ΔCMB có
BN =MC (CMT)
\(\widehat{NBC}=\widehat{MCB}\) (t/c tam giác cân )
BC : cạnh chunh
=> ΔBNC = ΔCMB (g.c.g)
Theo công thức trung tuyến:
\(\left\{{}\begin{matrix}\dfrac{2AB^2-AC^2}{4}=BM^2-\dfrac{BC^2}{2}\\\dfrac{2AC^2-AB^2}{4}=CN^2-\dfrac{BC^2}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2AB^2-AC^2=46\\2AC^2-AB^2=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4AB^2-2AC^2=92\\2AC^2-AB^2=-2\end{matrix}\right.\)
\(\Rightarrow3AB^2=90\)
\(\Rightarrow AB=\sqrt{30}\)
Ta có:
AB=AC(gt)⇒AB/2=AC/2
⇒BN=CM (do N và M lần lượt là trung điểm của AB và AC)
Xét tam giác BCN và tam giác CBM ta có:
BN=CM(cmt)BN=CM(cmt);NBCˆ=MCBˆNBC^=MCB^ (tam giác ABC cân); BC:chung
Do đó tam giác BCN=tam giác CBM(c.g.c)
=> CN=BM(cặp cạnh tương ứng)
=> Tứ giác BCMN là hình thang cân(do hai đường chéo bằng nhau)
Ta có: Tam giác ABC cân tại A => AB = AC
=>AB/2 = AC/2
=> NB=MC
Xét tam giác BNC và tam giác CMB có
NB = MC ( cmt)
góc B = góc C
BC cạnh chung
=> tam giác BNC = tam giác CMB ( cạnh - góc - cạnh )
Mệt quá câu A thôi nha !
Gọi G là giao điểm của BM và CN, ta có;
;
Tia AG cắt BC tại I thì .
Xét v...
tự vẽ hình
theo bất đẳng thức tam giác có BM< AB+AM=AB+1/2AC
CN<AC+AN=AC+1/2AN
mặt khác AB+1/2AC< AC+1/2AN( VÌ AB<AC(gt), 1/2 AC<1/2AN)
=> BM<CN